Learning APL with APLX

Version 5.0

Learning APL with APLX 2

Copyright © 198520 MicroAPL Ltd. All rights reserved worldwide.

APLX, APL.68000 and MicroAPL are trademarks of MicroAPL Ltd. All other trademarks
acknowledged.

APLX is a proprietaryproduct of MicroAPL Ltd, and its use is subject to the license agreement in
force. Unauthorized copying or use of APLX is illegal.

MicroAPL Ltd makes no warranties in respect of the suitability of APLX for any particular purpose,
and accepts no liabijitfor any loss arising out of the use of APLX or arising from the information
contained in this manual.

MicroAPL welcomes your comments and suggestions.

Please visit our website: http://www.microapl.co.uk/apl

Version5.0 July 2009

Learning APL with APLX 3

Contents

(O70] 0] (=] 0] 1= PP 3.
INEFOAUCTION 10 AP L.ttt a et emne e 11
OFIGINS OF APL ...ttt eeeeeaeeeeennennnnnnes 11
Some features Of the [ANQUAGEci i e e e e e 11
Entering APL SYMDOIS..........ociiiii e 15
The QUICKSYIY POP-UP ..ot 15
Using an extended Keyboard [aYOUL.............oooiiiiiiiieeice e eee e eeen s 15
Choosing and custoiing the keyboard 1ayOuL............ooouueiiii i 16
Customizing the Keyboard [ayQUL..............oooiiiiii e e ere e 16
BT O V1T S T oL 1.1 o RSP 17
Bringing up the QUICKSYM WINOQW..........ooiiiii e e e e e e et e e e e e aaan s 17
Using the keyboard with the QUICKSYM WINAOMccoiiiiiiiiiieie i e e e eeaeeaees 17
THE CONTEXTUAI MBI ...ttt e ettt 18
][] 1[N 11T =] o 21
THE INILAT APLX GISPIAY. ...ttt ettt bbbt e e e e e e e e e e e e e e e e e e as 21
Some arithmetiC fUNCHIONS..........ooiii e e e e 21
g o] 1Y =TT 7= Vo [T PP 22
USING the SESSION WINOOWL. ...t e e e e e e e e e e e 23
Arithmetic 0N lIStS Of NUMDEIS ... 24
Matching UpP NSt IEBNGINS. ... 24
(@0 [T g o] = (=T o1 U o] o F PP PP PP PPPUPPPPPPPPR 25
PAIEINTNESES ... 26
Negative NUMDErs and SUDLIACL.cooviiiiii e e e e e e e e e e enn e e e e e eeee 26
DUAHPUIPOSE FUNCLIONS. ...ttt e e e e et e e e e e e e e e et b s e e e bt e eeeeeeeesannnnns 26
(@< [To =T To I [To T i =T |) I PP P PP PP 28

Y 11 = 2 30

Learning APL with APLX 4

PTAICTICE. ...t e e e e e e e e e e eas 30
PO NS e 30
F N RS £ F TP UPPTPPPRPRPPN 31
VAIADIES. ...ttt ettt h et e et n et nn e 33
F ST T[] 41T €3PSR 33
Variable MAMES e ettt et nnn e 34
ASSIgNING lIStS 10 VANADIES......ccoe e e 35
YY) (=] 1 O] 1.4 4= Lo £ PSR 35
(O o1 = Tod (= = FoTS T [L = 1 € 37
MUILIPIE @SSIGNMIENLS.ciieiiiiii e e e e et eee e e e et e e e e e e e e e ettt e e e e essata e e e eaeeeessannnnns 38
Displaying variables tOgether........ ... 39
8 Lo] a1 T 1S3 €30 o o [1 T 39
Joining and merging variables.............ccccciiiiiiiie e eeenneeeeeeenenn A0
Simple and Nested VariabIles....... ..o 41
IMIXEA VAITADIES ...ttt e e ettt e e e e et e e e e e e e r et e e e e e e s eee e e 41
Y0010 =T PP PRRRPPY” 3
PTACHICE. ...t e a e e e e e e e as 42
[6] 0] [T 0 PSR v24
L= 10 5T T PSP PP R TPUPPRPPI 45
TRE? TUNCHION ... ettt e e e e e e e e e e et e e e e e e e 45
TRES TUNCHION ...ttt ettt ea ettt ettt et et e et e eaeeae et e et et et eseetesteeseensene s 46
SettNG UP tADIES ... e e e enniee e 4O
ATNMETIC ON TADIES. ... eeeee 48
(O8> 1 (=T F= L1 [T 7=] 50
Y= [=Tox 1] o J= 1T 0 41T) £ PSP 51
D0 41T 0 E5] 0] I PP 53
Enquiring about the Size Of dala............oiiiiiiiii e e 54

LI o (ST o) e A= U= Tod (=] TP 55

Learning APL with APLX 5

IMIXEA TBDIES ...t e ettt et e ettt ettt ettt ettt et eeeteb bbb bbb bbb 57
NESTEA TADIES ... et e e et e e et e et e et et e e e et e e e e e e nen e 58
D=7 o] 1 o ST PP PP 58
Y011 0 0T= T TP 59
PTAICTICE. ...ttt et e e e e s nn e e e e e 60
PrOBIEIMS. ... et eeeee] 60
F Y 15T PP 62
WIHEING @ FUNCHION.......oiiiiicccc e amr e sr s 63
B I = A0 01T = Lo 63
USEI FUNCLIONS. ...ttt ettt et e oo ettt e e ettt e e e e e e e b e e e e e e e e e e aeeeeanas 64
WIIING @ FUNCHION. ... ettt e e e e e e et e e e e e e e e e e e e e e e eeeeeees 65
L T 1T o = T L T 110 o 67
o 1] To =T (U] o [od 10 o H PPN 68
L0 1T T = o 1o = 68
SAVING @ WOIPKSPACE.ceeiiiiiii i ettt e e e e e e e ettt eee e e e e e et et e e eeeeeeastta e e eeeessaaa s eeeeeeeeesseannaens 69
User funCtions WIth @rgUMENLS.........ooiiiii oo e e e e e 71
Functions Within fUNCONS...............ociiiiii 72
Overview Of the APL SYSIEML........ccocuiiiiii i 73
ST @ =Y o= o3 1 To> 1 1[0 o 73
TN I G [(=14 o (= (= PSRN 73
THE WOTKSPACE.ceeeetiiiitiieeeee ettt e e oo e aeeteeeeeeeeeeeseeeneseeeeeesmnnnnnnnns 73
D = PP PP 73
1Y oo =T USSP PSP PP P PP PP PPPPPPPPPPPN 74
R TUT T 0T g ea (o] g L=V [0 o) 01T = L] = 74
System fuNCLIONS aNd VANADLES...........coiii i e e e e e e e e 74
YV £ (= . oo 1] .4 = T T PP 75
Userdefined funNctions and OPEIratOLS..........ccieuuuiiiiiie e e e e et e e et e e e e e eenans 75

1 =TT 75

Learning APL with APLX 6

ErTOr NANAIING. et e nnnnnnaaae 76
1= 76
I IR TAT 0T T o = Lo = SR 77
[aTet i [o] ST @] 1= = o] £ T O = 1T = Y & 4
Yo] o 1= (oL] 4 = USRSy 4 4
MaNAGING the WOIKSPACEeeiiieiiiiiitie ettt e e ettt e et e et ettt ettt et e et e nne bbb nnebnnnennnnes 78
Internal WOrkSpace COMMANTS.c.uuiiiiii e e e e e e e e e s e e et e e e e et s e e e eta s e s nnn e e eeennnaeeees 78
Loading and saving workspaces using the File MenU..............coovvviiie i, 79
Exernal WorkSpace COMMANAS........uui i e eeicee e ee e e e e et e e e e s ee e e et e e s eatn e eeeataeeesennneernneerennd 80
SYSIEM VANIADIES.o et e et e e 81
SYSTEIM TUNCHIONS. ... ettt ettt et e e e e e e ee et e bbb e e 82
D | T TSRO TP PRI 83
VAIADIES.t 83
N2 T [T 83
QLN 012530 = L= SR 84
Size, SNAPE AN AEPLNL ... s 84
SettiNg UP data SHUCTUIES...... e e e e e e e e et e ena e e e e aa e e e eaeaees 85
Data Structure Versus datBRlUE...............oooiiiiiiiiii i e e 87
EMPLY dAta SITUCTUIES ... e e e e e e e et r e e e et e e e e e te e e et e e e eetan e eeeernnn s 88
(] T g a1 gty a1 {0 (=T 4T Vo RPN 88
a0 0= q] o o PP SPRTRTRRRRRIN 89
BUII-IN FUNCHIONS ...ttt ams et e et e e s e e e e e e ne et e es 93
F o[0T 0[] o £ PP UPPPPPTPPTRPIN 93
EXECULION OB ... et e ettt et e e e e e e e e e eeeeeennnnnne 93
NUMDEIS OF TEXE ... etttieeiiiiit ettt et e e e e e et e e e e e e e e bbbttt e e e e e e e nnenne s 94
Shape aNd SIZE OF GALAL.......uuiiiiii et 94
(€T (o 0] o T30 1] o 1o =N 94

F AN 11 =] 1o LU T3 €0 TN 95

Learning APL with APLX 7

LN (o] o] £= 1o (U] Tod i [o] 0 = PP 96
CompPAarative TUNCLIONS.........i i e et e e e e e e e et e e e et e e et e e e eetan e eeeannaeaees 97
(oo [[or= | {01 aTox i oo - ST 99
ManiPUIALIVE TUNCHIONS. e e et e e e e e e e e ettt e e e e e ee e e e e e eeeeeennnanns 100
Sorting and codiNG fFUNCHIONScoiiiiiie e e e e e e e e e e e s e e eaeeeenenes 102
Miscellaneous functions and other SYMDQIS.............uuiiiiiiiii e 103
YY) (=] I {0 L 70 TS 104
System functions (QUA FUNCLIONS)...........uiiii i e e s e enraeeees 105
System functions for manipulating data................oii i 105
System functions for reading and Writing fil@S...........cooiiiiiiiiiiicee e, 106
Some moe useful SYStEM fUNCLIONS.........cooiiiiii e 107
L0 1< > 0 PR 111
REAUCE @GN SCAN. ...t e e e e e e ee e 111
Compress and EXPaANG.........oou i rn e e at e e et aaae 112
O IN] (o= T aTo IT =T gl o] oo [F o3 £ PP UP 112
e T o PP 113
AAXIS. e e e e et 114
AXIS SPECITICALIONS. ... e aaaaenes 116
Userdefined FUNCLIONS aNd OPEIatOrS.cooiiiiiiiiieeiiticeiee e eeie e e sttt e e e s e smatee e e e e et e e e e s eenneeeeeesamneees 117
ArgUMENTS AN FBELS.....ooiiiii e eee e e e e e et e e e e e e e e e e ettt e e e e e e taa e eeeeeeeessraaanns 117
QST o [(T a=Te o] o1=] =10] £ W PP PPPPPPPPPP 118
[0 1T T i 18] o 1T £ 118
THhe fUNCHON NEATEL..... .o e e e e e e e 119
BN =0 01T = 1 (] g 4T T= T [U 121
Local and global VariableS..........ccoeeeiiiiii e 121
B ANCIING. - 122
[0 T o1 T S 123

(2] o 1] £ TP 123

Learning APL with APLX 8

Ending execution Of @ fUNCLIQI...........oooiiiiiiee e e 124
Strudured CONLIOL KEYWOITS.ciiiii e e e e e e e e et e e e e et e e e emn e e e eaanaeeeee 124
COMMENES IN TUNCHIOMNS. ...ttt eeeeeeeenassbsebanebbnnnnnnnene 125
LOCKEA FUNCHIONS. ...t ne e 125
L YOADEESYd 2N Wy2YERAOQ.. . F.dzy OO A2 Y A i, 125
COMPONENT FIIES.... ettt ettt ettt e ettt e e st e e b ene e e e st e et et e e asbe e e annn e e s rmatneean 127
1 2P RRRRTRRRTRRN 127
LOT0] 0 0] 0L0] 1= o £ 7S PP 128
[R To {1 TSI 0] o 1= = Lo = 128
o) g = o] 1 o TP 131
Errors in CalCUIATON MOTE.........oiiiiieiieeee e ettt ettt e et e et e et e e e e e enne bbb bneneannne 131
Errors in usedefined fuNCtioNS OF OPEIatOrS........ccveuiiiiei e e e 131
The DeBUG WINAOW. ...t a e e et et e e e e e e e e e e e e e e e eeeeees 131
=T (T 0 132
THE StAte INCICALAL. ... uueeeiiiie ettt e e e et e e e et e e e e e s e r e e e e e e e eas 132
Action after SUSPENAE EXECULION.iiiiiiiiiiiiiiiie eenannnees 133
Editing suspended and pendent fUNCHIONSc.uii i eee e e e e e e e 134
Error trappirg @nd traCiNGooooi it 135
Errorrelated SyStem fUNCHIONS.......o.u e er e e e e e e et e e e e eeeeeenaneeeens 135
(@100 (=1 o108 T [|1 o 7= o LSS 135
0T 4 F= L1 o TR PP PP PPPRPRPPPR 137
T T 1 = 111 Vo 137
UserDefined Classes iN APLX VEISIQN.A.........ouiiiiiiiiit ettt sttt amaseas 139
1o o [8 o1t [o] o NPT 139
BN =10 o o PP 139
(€= 1 1] To IS] r= L (=T o PRI 139
3£ (= 1. 11/ 1] 1 oo 143

[a] aT=T] =T a o TR 143

Learning APL with APLX 9

Object References and Class REEIENCESuuiiiiiiiiiiieee et eeeeee 144
B I L= VLU] Lo o = ox 145
TYPES O PrOPEITY. ..ottt e aeeeaaaeeees 145
Name scope, and Public versus Private members.............iiiii oo 146
Canonical Representation Of @ ClaSS........ciiiiiiiiiiiiiiieee e e e e e e e e e e e e eenene 147
1070 0153 1 £ [ox (o] = TP 149
Creating objects (INStAaNCES Of CIASSES).....cciiiiiiiiiiii e e 150
Creating instances of internal (UsBefined) ClaSSES. ... 150
Object references and 0bjecCt lIfetiMES.........ccvvuii i e 151
Using Classes WItNOUL INSTANCES..........couuvuii e e e e e e e e e e eees 152
DefiNiNg @ SEt OF CONSTANES. e e e e e e e ee bbb e e 152
Keeping NamMESPACES Y.civuiiii e e e e e e e e e e e e e e e e et e ee s e e e ataraeeearanas 152

(e ol 1 g o o101 1 4To] {3 TP 153

Learning APL with APLX 11

Introduction to APL

Origins of APL

APL began life as a notation for expressing mathematical procedures. Its originator, Dr Kenneth
Iverson, published his notation in 1962 in a book called 'A Programming Language' from which
title the name APL derives.

Subse@uently Iverson's notation was implemented on various computers and did indeed become ‘a
programming language'.

The specification of the language was substantially enhanced during the 1980's, notably by Dr
James Brown in IBM's APL2, giving rise to the tegacond generation APL' to cover those
versions of APL that included the enhanced specifications.

The development of the APL language has continued in the 21st century. Whilst retaining
compatibility with APL2, APLX Version 4 adds objegtiented languagextensions, as well as a
large number of other facilities, to the language.

Some features of the language
Data handling

The ability to handle generalized array data without complicated programming is one of APL's
strongest points.

The language lets you filee and give a name to a single item of data, a list of items, or a table of
items, or indeed arrays of more dimensions. This means it's just as easy to write an instruction that
adds two tables as one that adds two numbers.

The extra work caused by suah instruction is handled by APL internally. It goes through the
named arrays of data, successively selecting and adding corresponding items, and it stops
automatically when it finds that the items are exhausted.

Consequently there's usually no need farrte, loops or any of the mechanisms traditionally used
to control such operations in other programming languages: the structure of the data effectively
does this for you.

Power
APL has a powerful repertoire @ifnctions(i.e. operations it can perform)h&se include a full
range of sophisticated mathematical functions and a range of data manipulative functions which

can do anything from a simple sort to a matrix inversion.

These functions can be combined so that on a single line you have a seriesafgunttracting
dynamically, one function's results forming the next function's data.

Learning APL with APLX 12

APL also hasperatorswhich modify the way in which functions are applied. This gives you a
range of general purpose build#pcks which can easily be combined ineayvflexible and
consistent manner.

This flexibility combined with APL's ability to handle complicated data makes it a uniquely
powerful language.

APL Symbols

The syntax of most programming languages is restricted to the ASCII character set, which was
originally designed for use in commercial data processing with very limited hardware, and which
lacks even a basic multiply symbol. As a result, most programming languages resort to
compromises such as using the asterisk symbol for multiply, and compoundsgundioas <= to
mean 'lesgshanor-equal’ or ** to mean 'power'. APL is not limited to the ASCII characters;
instead, it uses a range of symbols to represent itsibdiinctions. This permits the APL user to
carry out a wide range of programming tagka very concise manner.

There are no reserved words in APL. The symbolic nature of APL gives it an international appeal
which transcends different national languages.

For many years, the use of special symbols by APL, and the special keyboards agdidigpés
associated with them, was seen by many people as a big disadvantage of the language. Nowadays,
with Unicode fonts and eadg-use input methods, the special symbols are no longer such an issue.

Modularity

Besides giving you functions that are Ibin to the language, APL lets you define your own. In
fact, what you might normally think of as a '‘program’ consists, in APL, of a collection ef user
written functions each of which does a part of the total task.

These functions can ‘call' each other ardhange data, but each is quite separate and self
contained. This has two very useful consequences.

First, debugging is much easier since each function can be tested separately and errors are easy to
isolate.

Second, it imposes a natural {dpwn structue on your programs.

APLX takes the traditional modularity of APL further by borrowing the concepts of 'ebject

oriented' programming from other languages. This allows you to define classes (collections of data
and related program logic), and to create asel instances of those classes (objects), in a natural
APL style. You can even use classes written in other languages such as C#, Visual Basic, Java, or
Ruby.

Convenience
APL is convenient to use for many reasons. In the first place, it's concise. Aevielinés of APL

can do a lot of work. Then it's an essentially interactive language. As you write each line or
function you can try it out and get immediate feedback. It's also adyigmiclanguage, which

Learning APL with APLX 13

means that you do not have to specify in adeambat is valid for a given data item or function;
you can just use it immediately.

In addition, it has a very useful concept calledwloekspaceThis is basically a collection of the
data items, functions, and classes which you set up in the coursm@fedparticular job.

The workspace is in computer memory while you work, making everything you want immediately
accessible. It can be saved (i.e. copied on to a disc) in its entirety when you stop, and loaded back
into memory next time you want to use it

Ease of learning

APL is easy to learn in the sense that it's easy to get started. You'll be able to do simple things
almost immediately.

Once started you can explore the language, discovering the functions and techniques that are of
interest to you. APIsupports this way of learning: it's totally consistent and does not have many
arbitrary rules. And, as already said, it supplies immediate results and feedback.

What's more, because APL is different from conventional languages, it actually helps to be a
computer novice!

Some professional programmers find it difficult to accept that APL handles complicated data
without loops and counts. They're unused to the APL concept of a ‘workspace' in which data and
code rub shoulders. They fret about 'bgadety’ andhe fact that APL lets you do what you want.
The functions written by the user behave neither like programs nor subrcutthasare they?

If you haven't programmed before, none of these questions will bother you. You'll accept the way
APL does things asatural and convenient. For this reason, APL has traditionally been used by
people who are not primarily computer programmers, but who need to write quite sophisticated
programs in the course of their work or researattuaries, engineers, statisticiagb®logists,

financial analysts, market researchers, and so on.

Productivity

Unlike many programming languages, APL wasn't designed to match the ways in which a
computer works internally. It was intended to help people define procedures for solvingnsoble

This makes it efficient for people to use, though it may give the computer a little more work to do
in the process.

This is reflected in development times. You'll find you can produce a working prototype very
rapidly. Thanks to the modular approach@maged by the language, and the ease with which
modules can be tested, corrected and combined, it takes little extra time to turn this prototype into
the final, fully tested version.

Learning APL with APLX 15

Entering APL Symbols

APL uses a variety of symbols to represent ititbn functions. Many of these are symbols that
do not exist on a standard keyboard. Some of these will be familiar (for exanfpielivide, and

J for greaterthanor-equal). Others are specific to APL (for examipker roundup or greatenof,
andi for finding out if two arrays are exactly the same in shape and contents). In order to use
APL, you need to be able to enter these symbols. Most versions of APLX provide you with twc
ways of doing this.

The QuickSym™ pop-up

If you are completely new to AR you will probably find it easiest, at least to start with, to use th
QuickSyni" feature of APLX. By pressing a single key (usually the 'Menu' key in Windows, or .
function key- by default F1- under MacOS), you can bring up a panel which display&Rie
symbols. This is described in the next section.

Using an extended keyboard layout

The traditional way of entering special APL symbols is to use one of the extended keyboard
layouts which APLX provides. You will probably want to use the 'unified’ layguch is selected
by default. This is configured as follows (the exact layout will vary according to the country in
which you live and the specific model of keyboard):

1 z|[@=|[# v||$ All% o|[A R|[& o[* e[(¥|[) al[_][+ B

172 |[3<]|/4=||D=|6=2|7>|8#[9V]0Aa|-x|== |

6 W alE<IR [T slVBIUEIT o8P <8l B .

Ilq? wWuwilee rpH ~[ly T{ludflir|loefp *||[<]~
s 16 1F e THa KoL T
aw sI"dLll _Hgv hallje(k "[|10]; 2f[' w|[* ¢

T3]z J[x |fc v |[B [N M |[<<|[>=][? |

|\|— zc||x>3|lcn VU!bl ntiml|, A|.X% /7‘H

As you can see, each key is shown with up to four symbols. As with a conventional keyboard,
given character key generates a lower chsgacter and, when depressed in conjunction with the
Shift key, the corresponding upper case character. These are shown in black and red on the ¢
diagram, in the loweleft and uppeteft positions on each key.

../images/aplx_keyboard.jpg
../images/aplx_keyboard.jpg
../images/aplx_keyboard.jpg
../images/aplx_keyboard.jpg

Learning APL with APLX 16

In order to enter the other symbolsuyase the AltGr key, which acts just like the Shift key in thai
it modifies the effect of another key. (In néL applications, AltGr is used to type various
different characters, primarily ones that are unusual for the locale of the keyboard layoag suct
foreign currency symbols and accented letters.) Using the AltGr key with another key produce
symbol displayed in green, on the lower right of each key in the diagram above. The remainin
symbols (shown in blue, on the top right of each key) ateret by pressing the AltGr and Shift
keys simultaneously. (Note: On a Macintosh keyboard, use the Alt or Option key instead of
AltGr).

For example, the key in the upper row of the keyboard, inscribed with the digit 4, produces the
following symbols:

If pressed by itself, the digit
If pressed with Shift, the dollar sign

If pressed with AltGr, the APL leghanor-equals symba]
If pressed with Shift and AltGr, the APL grade (sort) symbob

= =4 =4 =4

If you have problems with the keyboard (e.g. because your keyboard does not have an AltGr |
see: http//www.microapl.co.uk/apl/aplx_support.html#keyboard

Choosing and customizing the keyboard layout
APLX supports three keyboard layouts. These are:

1) TheUnified APL layout, as shown above. This is similar to an ordinary ASCII keyboard
layout for unshifted ash shifted keys. Special APL symbols are obtained by using AltGr o
Shift-AltGr combinations. If you are learning APL we recommend that you use this layo

2) TheStandard or Traditional APL layout. This is based on the traditional APL keyboard
where alphabet keys unshifted give upp@ase letters, shifted give APL symbols, and
with the Alt or AltGr key give lowerxase letters. It is recommended only for people who
are used to programming in APL using a special APL keyboard.

3) TheDefault non-APL layout. In ths mode, keyboard mapping is the same as irA®IQ
applications. For example, in the US it would usually be the ordinary US QWERTY
keyboard. In France it will usually be the French AZERTY keyboard.

You can select which layout you want to use by selettiad<eyboard Layout item in the Tools
menu of APLX's Session window. In addition, you can at any time swap between the Default r
APL layout and your preferred APL layout (Standard or Unified) by pressingdNGot CmdN on
the Macintosh). This is veryseful for entering comments and text in APL functions, especially if
you are using a language other than English

The current keyboard layout can be shown at any time by selecting the Keyboard Layout item
the Help menu. Under Windows, you can also disfiés by pressing CHfF1.

Customizing the keyboard layout

You can customize the keyboard layout using the Keyboard tab of the Preferences dialog. Thi
allows you to move specific characters around on the keyboard.

see:%20%20%20http://www.microapl.co.uk/apl/aplx_support.html#keyboard.

Learning APL with APLX 17

The QuickSym popup

Bringing up the QuickSym window

The QuickSym" feature of APLX allows you to enter special APL symbols without using a
special keyboard layout. By pressing a single key (the 'Menu' key in Windows, which is usuall
the right of the space bar next to the Ctrl key, arrecfion key- by default F1- under MacOS),

you can bring up a panel which displays the APL symbols:

APLX Session 1: CLEAR WS

File Edit Debug Tools Window Help
APLX for Windows
Copyright (C) 2001-2007 MicroAPL Ltd
WS Size = 20.0MB, Version = 4.0.3
CLEAR WS
xx
F xS [L] E
* @ 0O Ll T ~0 9 &
< S=2>% = €€
AvavBEBERE
tpeolviduwrs
TldodeR, snu
AXENwel]
A oO0Ovw {}
«>8aa%€4rF

You can now enter one or more APL symbdmysusing the mouse to click on the corresponding
image in the QuickSym pepp window. To assist in selecting the character, hovering the mouse
over a symbol brings up a brief description of what it does (if it hasacgiement and two
argument forms whichave different functions, these will be shown on separate lines).

Using the keyboard with the QuickSym window

The QuickSym window is designed so that it is there when you need it, but gets out of the way
when you don't. Once you have displayed the Quick@&ymdow, the keyboard behaves as
follows:

1 Any key which produces a printing character behaves as normal. This means that you «
freely mix typing at the keyboard, and using the mouse to enter symbols from the
QuickSym window. For example, with the lineosim in the picture, the user has typed xx
and then brought up the QuickSym window. By using the mouse to select the assignme
arrowY (in the bottom left corner), and then typing 32, the line will read 82

1 Pressing Enter (or Return) closes the QuickSyndow. The keystroke is passed to the
underlying window. Thus, in the above example, if the user now presses Enter, the

Learning APL with APLX 18

QuickSym window will disappear, and the line of APLYx82 will be executed.

1 Backspace and Delete act in the normal way, and do n& tleQuickSym window. This
means you can easily correct mistakes in the line you are entering.

1 The cursor movement keys (Cursor Left, Cursor Right, Cursor Up, Cursor Down, Page
Page Down, and if appropriate Home and End) allow you to navigate atwiQiickSym
window by using the keyboard rather than the mouse. The curssidlgted character will
be highlighted in the display. Pressing Eriter (CmdEnter on the Macintosh) inserts the
currentlyselected character in the line you are enterindyawit closing the QuickSym
window.

1 Pressing the Help key (F1 on Windows, &irbn Linux) brings up the APLX Help page
for the selected character.

1 The Escape key, or pressing the Menu or function key again, closes the QuickSypm pop
without having any otér effect.

1 Any other key closes the QuickSym window, and is ignored.

The contextual menu

Right-clicking on a character in the QuickSym Window (or claskd-hold on the Macintosh)
brings up a pojup menu:

APLX Session 1: CLEAR WS

File Edit Debug Tools Window Help
APLX for Windows
Copyright (C) 2001-2007 MicroAPL Ltd
WS Size = 20.0MB, Version = 4.0.3
CLEAR WS
xx ¢l
b= x [] 21
* @ 0 I T~ 03T o
< % Help on symbol...
A N Copy symbol to clipboard
1 f Show symbol on keyboard..
(- e
" XE e s T]
oO0DOvw{}
-8 4a4a9%€A4rF

This offers the following options:

1 'Help on symbol' brings up the APLX Help page for the selected symbol (this is the samr
as pressing F1 under Windows, or the Help key under MacOS, when yosdlacted a
symbol with the cursor keys). If the symbol has more than one Help page, there will
normally be a link on the page which appears. If the symbol does not have a Help page

Learning APL with APLX 19

option will be disabled.

1 'Copy symbol to clipboard’ puts the setgttharacter into the clipboard. This is useful if
you just want to copy an APL character to another application.

1 'Show symbol on keyboard' brings up the keyboard layout window, with the key on whic
the character appears highlighted. This is very uskfau are familiarising yourself with
the APL keyboard layout, or are used to a different APL layout:

Keyboard Layout - Unified APL
Tools Window Help

IR AR

[e

[]

Learning APL with APLX 21

Simple Arithmetic

This is the firspractical session. It consists mainly of examples for you to enter and comments
what happens when you do.

You'll be explicitly asked to type in the examples to begin with, but after a few pages it will be
assumed that to see an APL statement is toitypad the explicit instructions will be dropped.

To download a timdimited evaluation copy of APLX so you can try this, visit @ownload page

The initial APLX display

The exact method of launching the APLX applioatwill vary from system to system, and you
should check the relevant implementation notes for the details. When you enter APLX you will
the first APL display, the one which includes the copyright statement, the version number, the
workspace size antié message that the workspace currently in memory is called 'CLEAR WS'
The message should look like:

APLX for Windows

Copyright (C) 2001 - 2008 MicroAPL Ltd
WS Size = 20.0MB, Version = 4.1.6
CLEAR WS

(Exact details about the version number, WS size, etg vary)

APL starts in calculator mode which means that each statement you type is executed as soon
you press ENTER.

Some arithmetic functions
Type in this statement:

5+12 <enter>
17

Pressing ENTER caused the statement to be executed.

As you can se, what you type is quite easy to distinguish from APL's response. Your input is ir
by 6 spaces and if you are using a GUI version of APLX (Windows, Macintosh or Linux) it will
also be in a different colour.

Add is one of the 50 or so functions buiito APL. (A 'function’ is simply an operation, in this
case, an arithmetic operation). Other familiar arithmetic functions which you'll use in this sessi
are subtract-() multiply (x) and divide €).

Try a couple of divisions:

18+3 <enter>

108+11 <enter>

aplx_downloads.html

Learning APL with APLX 22

9.818181818
Up to 10 digits are normally displayed in a result, though you can change this if you want.
Now type a multiplication:

4x7 <enter>
28

And another with some decimal points:

3.893x7.6 <enter>
29.5868

Subtraction too work as you would expect.

100- 95 <enter>
5

The normal minus always means subtract, as in the example you've just typed. The special 'hi
minus sign indicates a negative number, as in this example:

8-16 <enter>

8
Error Messages

Have you had angrror messages yet? You may have if you've made a typing mistake, or if yot
tried some of your own examples.

This example will produce an error message:

23+ <enter>
SYNTAX ERROR
23+

AN

The text of the message depends on the erroridrcéise you've broken the syntax rules: 'number
function number' makes sense to the APL interpreter. 'number function' does not.

The error markery) shows where the interpreter had got to in evaluating the statement when it
found the error. This may helwu identify the error, but obviously an error may not show up unt
something incompatible with it is found elsewhere. In such a case the error marker would be
pointing to the correct but incompatible part of the statement.

There's a list of error messagend their likely causes in the APLX Language Manual. But for the
time being don't worry too much about them. If an error message results from a typing mistake
simply retype the statement correctly. If it results from your own example and you cah# see t
cause, just try something else.

If you want to edit the last statement (rather than retype it) simply press Ctrl aAd &p (or
Command and U\rrow on the Macintosh, or on some systems Ctrl and R, or the ‘last line rece

Learning APL with APLX 23

key) and the statement wdppear again with the cursor at its end.

You can try this now. Your screen at the moment should look like this:

23+ <enter>
SYNTAX ERROR
23+

AN

Now recall the line (Ctrl and Uprrow, or Command and UArrow on the Macintosh) and
completethe statement so that you have:

23+8 <enter>
31

Using the Session Window

If you are using a GUI version of APLX (Windows, Macintosh or Linux), APL commands are
entered in the Session window:

APLX Session 1: CLEAR WS SHEC] X
!' File Edit Debug Tocols Window Help
I[APLX for Windows
[[Copyright (C) 2001-2008 MicroAPL Ltd
WS Size = 20.0MB, Version = 4.1.6
‘ CLEAR WS
|
|
\
|| KB: Uni 4PL

Normally, any text you type is added to the end of the session. If however there is already son
text in the window which is exactly what you want to type in, or close to what you want, then tt
is no need to renter the text. You can select existing text on the screen, edit it, and then subm
the line to APL.

To do this, you can move the mouse anywhere on the session window and click it. The text cL
(flashing vertical bar) will move to theopition at which you clicked. You can now use the norma
editing features of APLX such as the Delete key or enter further text, and you can also use the

Learning APL with APLX 24

menu for more sophisticated editing such as cutting and pasting text. You can continue thss pr
as much as you likeyou are actually editing texin the screen onlgt this stage.

When you press ENTER then the current lime. the line on which the cursor is flashingill be

re-displayed at the end of the session window, and submitted to RfLline you changed will be
returned to its former state.

Arithmetic on lists of numbers

Now we get on to something more interesting. Try this statement, making sure you include the
spaces between the numbers:

3+241175
5714108

The number o the left of the sign has been added in turn to each number on the right of the sig
Obviously, with lists of numbers, spaascount. There's a great deal of difference between:
1+23 4
and
1+234
as you'll have seen when you typed them lroth
The list can be on either side of the sign. Here it's on the left and the single number's on the ri

6381+3
96114

Now try some of the other arithmetic operations on lists. Here the divide function is used to di\
each number in a listy 15:

2.533.712 8+15
0.1666666667 2.246666667 0.8 0.5333333333

And here's an example using the multiply function:

9.811.217 1.2x1.175
11.51513.16 19.9751.41

In the last example you could be doing something useful such as multiplysigggdrices by
1.175 to give the prices including VAT (Value Added Tax) at 17.5%.

Matching up list lengths

So far the examples have involved a single number on one side of the arithmetic sign and a li
numbers on the other. But you can do arithmari¢wo lists of numbers:

Learning APL with APLX 25

123294x1352
1291458

The first number in the list on the left was multiplied by the first number in the list on the right,
second by the second and so on. But notice that the list on the left contained thers@ereohu
items as the list on the right.
Try this example to find out what happens if the lists don't conform in size:

35+415

As you see, you get an error message like this:

LENGTH ERROR
35+415

AN

Since there are two numbers in ors &nd three in the other, the system doesn't know which
number to add to which.

If a function operates on two lists they must both have the same number of elements. It's quite
order, though, to do an operation involving a single number and a list.

Order of execution

So far there's been no doubt about the order in which parts of a statement are executed becal
examples haven't contained more than one arithmetic function. Now here's a statement which
contains both multiply and subtract. Type it inf becide what the answer will be before you pres
ENTER:

3x3-1
Possibly you think the multiplication will be done first (either because it appears first in the line
because you expect multiplication to be done before addition or subtractitmt trase you think
the answer is 8.

Press ENTER and see.

3x3-1
6

In fact APL always works from right to left. So it first did1 giving 2. Then it did the
multiplication. (There's no hierarchy of operations in APL because there are too manynsiircti
the language for one to be practicabimagine trying to remember the order of precedence of
fifty different operations!)

Here's another example of execution order. Again see if you can predict the answer before pre
ENTER:

23148222

Learning APL with APLX 26

The system first evaluates222 giving444 . Thenitdoef31+444 giving675 . Press
ENTER and confirm this:

231+8+222
675
Parentheses

If you want to force a particular execution order, you can do so by using parentheses. Please
the last example, using parentheses to force execution of the addition first:

(231+8)+222
55.54.5
Negative numbers and subtract

You saw earlier that the minus sign means 'subtract’ and the high minus sign indicates a nega
number. Here sukact is used:

1985 - 1066
919

Here is an example with negative numbers in two lists which are being added together:

37177+ 4712
17275
The minussign used to indicate negative numbers is known as thenhighs', and helps to make

clear the difference between a negative number and the subtraction operation. Fnarighs
usually found above the number '2' on the keyboard.

These two examples illustrate this:

2-3+5

6
2 3+5
72
In the first example, the sum ®fands was subtracted frora. In the second example3 was

interpreted as a negative number.2Sa@ was treated as a twelement list and each element was
added tc.

Next we're going to consider a feature which effectively doubles the number of functions at yo
disposal. Then we're going to round things off with two new functions.

Dual-purpose functions

The examples you've seen so far have taken the form:

number(sfunctionnumber(s)

Learning APL with APLX 27

For example:

544 oOr 134 +316

Each number, or list afumbers, operated on by a function is said to be an argument, so all our
examples have shown a function operating on two arguments.

You may disagree, thinking perhaps of examples like #Rs:1

In fact each function in that example does have two argten€he subtract function has the
arguments andi1. The Multiply function has and the result of+1.

There is, however, an alternative to having an argument on either side of the function. You ca
any of the arithmetic functions in this format irede

functionnumber(s)

For example:
+12 Of x463 Or +1347
But when used in this way the functions have a different effect. Before reading any further plei

experiment with+ - x <, putting a number, or list of numbers, on thght-hand side only. See if
you can decide what (if anything!) each function appears to do.

kkkkkkkkk

What did you conclude? You probably weren't unduly impressedsiyce it appears to do
nothing. We'll find a use for it though in the next ptea. You'll have discovered that minus
effectively reversed the sign of everything to its right:

- 3684129
368 47129

The action of- may have puzzled you:

+12 410100
10.50.250.10.01

In fact+ used in this way yields the recimal of each number on its right (i.e. the result of
dividing 1 by that number).

To put it another way, you can think€f6 2 as being equivalenttz362 .
You may have concluded thasimply produced lists afs:

X2 66 8 2 13 109
111111

This example gives a clue to its real purpose:

Learning APL with APLX 28

x80°3°704
1001101

It returns a value aof for each positive number1 for each negative number aador 0s.

Now it doesn't really matter whether you remember what each of these signs doesaden
this 'onesided' format you can always look at the APLX Language Manual if the need arises.
What does matter is that you appreciate that many APL functions are capable of two
interpretations. This flexibility effectively doubles APL's repertoire.

A small point before we move on.
When you typed the following expression earlier in this chapter you got an error message:

23+
SYNTAX ERROR
23+

AN

This is because though the pattern ‘funchamber(s)is recognised by the interpretemimber(s)
function' is not.

Ceiling and Floor (L andT)

To round things off we'll look at two functions that find maxima and minima. Thege(aseially
calledCeiling or Max) andr (usually called~loor or Min), and they are usually found above the
'S" and 'D' keys respectively.

We've had one or twexamples like this:

145+11
13.18181818

Examples, that is, that produced a lot of decimal places. Now the eight places following the pc
in this example may be essential, but if they aren't, it's easy to get rid of them.

Thet functionrounds up to the nearest whole number.
Ther functionrounds downto the nearest whole number.

L3503: 3: 3: 3:
14

[3503: 3: 3: 3:
13

They both work on lists as well as on single numbers:

£L342033"34054"87023"35074
121 13 66 14
|’..

.0 ;"340:4"3705; "6:0; 2
9912 1548

Learning APL with APLX 29

Since these functions simply round up or down to the nearest whole number, in the first exam
120.11 is rounded up ta21 and, in the second9.99 is rounded down te9.

If you want greater accuracy in rounding, a simple piece of arithmvdtiachieve it:

£L342033"34054"87-028"35074"
1201265 14

Now 0.5 is subtracted from each number in the list before rounding up is carried out, thus
ensuring a truer result. Rounding down can be corrected in a similar way by addioghe
numbers to be rounded:

r;,;0;;"340:4"3705;"6:0;2"-"207
100 13 15 49

Possibly you've noticed that all the examples:fandr have taken the orgded form:

functionnumber(s)

Used with two arguments, these functions have a different meaning. Try out some statements
the fom:

number(sYunctionnumber(s)

and decide what the twargument versions afandr do.

*kkkkk

As you no doubt discovered selects the bigger of two numbers:

4" " 8
6

while I selects the smaller:

4" 1 "8
2

If L is used on lists of numbg the first number in list 1 is compared with the first number in list :
the second with the second and so on. The ‘winner' in each comparison is displayed as the re

g" .35 7"
689

The equivalent procedure occurs with

8" :"3"b95"
351

Learning APL with APLX 30

Summary

We won't summarise everything: you can refer to the APLX Language Manual for definitions c
the functions we've covered so far-(x = L I').

There are, however, three points made in this chapter that are essential to your underdtanding
APL:

1) APL always works from right to left, passing intermediate results along the line to the left as
works them out.

2) A single number and a list can be involved in an operation, but if two lists are involved, they
must be the same size (i.e. balkie same number of elements).

3) Many functions can be used with either one or two arguments. The number of arguments
determines what the function does.

Practice

See what you can do with the functions covered so far. If you run out of ideas, why nap look

in the APLX Language Manual? It greatly increases the scope of the arithmetic (and other)
functions. It will, however, be covered in a later session so don't feel you have to master it nov
When you've tried things out to your satisfaction, dopitedlems on the next page.

When you want to end the session, type:

YOFF
Problems

Q1. Enter statements to:

a) Multiply each of the three numbesgss 2 by 8 and then add to the results of the
multiplication.

b) Add 15% to each number in the ligt 578 145

c) Add the difference betwean andg to 46127

d) Multiply the result ok times3 by the result oft timess and subtract from the total.
e) Reverse the signs in this list74 712 6

f) Compare these lists, selecting the larger numbeaah comparison:

27055 3311013

Learning APL with APLX 31

Q2. Which of these statements cause error messages? Why?

a)12 x9

b) 3+72

C)19034+7287

d)578

Q3. You're gettinge200 worth of Dollars for yourself arel 80 ande230 worth respectively for
two friends. Enter a statement which calculates how many dollars each of you will get at 1.96
dollars to the pound.

Q4. Highest recorded temperatures for a week in August were:

79 84 83 78 74 69 70 (Fahrenheit)

Enter a statement to convert them into CentigrdOne method is to subtract 32 degrees and
multiply by 5/9.) Suppress decimal places in the result.

Q5. Enter a statement to find the difference in yards between 1500 metres and a mile. (1 yard
0.9144m and 1760 yards in a mile)

Answers
(Your results bBould be the same. Your APL may be different.)

Qla)

44362 x8
28 52 20

b)

14578 145x1.15
16.1 5.75 89.7 166.75

c)

46127+13 -8
9111712
d)

~5+(6x3)x4x8
571

Learning APL with APLX

e)
- 3747126
341276
f)
4" 9" 2" 77"L"55"3" 32" 35
33 71055

Q2. The only one to cause an error message is:

c)
19034+7287
LENGTH ERROR
19034+7287

AN

(The lists aren't the same size))

578
578

APL thinks it's a tweelement list. If the intention was to subtract the valdi®m 5. the following
would have been more effective:

5-8

3

Q3.

200 180 230 x 1.96
392 352.8 450.8

Q4.

L"1207-*7E; +069; ":6":5329:"96"8; "92
26292826232121

(Work through it from right to left if it doesn't immediately make sense to you.)

Q5.

1500 - 1760x%.9144
7109.344

Learning APL with APLX 33

Variables

As in the last practical session, please type in the examplesiangounter them. If you don't,
you'll find parts of the session difficult to follow.

Assignments
This is an assignment:
C"§" 0397
A location or 'variable' called is set up in memory and the valae7s is assigned to it. An
assignment doesn't amtatically cause the value to be displayed, but it's there. If you want it

displayed, just type the variable's name:

A
0.175

Now A can be used in any expression in whodts could be used. Here are three examples:

200 x A
35
Ax30.5012 ,2560.30 15.00
5.3375 2.14375 10.5525 2.625
L"C"6"52072"34047"82052"37022
63113

Variables are convenient if you want to use the same value in a number of opeeafiens|ly if
it's a value that's a nuisance to key in, like this one:

E"§"06757; 459
The variablec now contains a conversidactor for converting pounds to kilograms. (1 Ib =
0.45359237 kg). You can usavhenever you want to do such a conversion; for example, to find

out how many kilos there are in 17 Ibs:

17xC
7.71107029

Or to calculate how many kilos there are insidnes and round up the answer:

LE6330636
70
Variables are also useful if you want to keep results. The result of the calculation you've just d
may still be on the screen, but it isn't preserved in the computer's memory. If you had wanted"
keep it you could have typed:

LQG" §X1LxE4

Learning APL with APLX 34

The result is now saved d0OE. To see it type:

JOE
70

Variable names
That last example showed that names needn't be a single letter. See if you can deduce some

other rules about variable names by typing in the following statementseamdy which ones
produce error messages or unexpected results:

AAA § " 6

cd"g" 3

7D" g" 34
E;;:,;"g§"2
LQJP"UOKVJ" g" 322
LKNNGUOKVJ" g" 322
LcemaUokvj"g"322

One error was:

LQJP"UOKVJ" g" 322
VALUE ERROR

LQJP"UOKVJ" g" 322

N

That particular error occurred because of the space betwedandsmITH. APLX assigned the
value100 to SMITH (type it again and typsmITHto see) but got stumped by the naroeiN for
which there is no value set at the moment.

Another was:

7D" §g" 34
512

This time,B was given the valug2 and then the \ae ofB was displayed after the numizerThis
point is covered in more detail later in this chapter.

Names can't contain spaces or any other symbol except the §eltaderlined Deltad), the
underline (), or the high minus™). You will have foundhowever, that they can contain
numerals, though not as the first character. (If you want to check up on these rules at any time
you'll find them in full in the APLX Language Manual.)

It's possible to produce duplicate variable names in the same worksprespecial
circumstances, as you'll find out when you write aa&fmed function. But in calculator mode,
names have to be unique; if you assign a valuethen decide to set up another variable
containing something else, all you'll do is gitie briginala a new value.

Learning APL with APLX 35

Assigning lists to variables

So far we've assigned single numbers to variables. This example puts a list of numbers into a
variable calledRICE:

RTKEG" §g"34067"7082"70; ;"9097

And this statement multiplies the number®RCE by the variable: (to which you earlier
assigned the value175) and puts the results \mT.

XCV" §g" RTKEG" 6" C
To see the contents of VAT type:

VAT
2.17875 0.98 1.04825 1.35625

Incidentally, in the last chapter we mentioned that theasgement version of did have a use.

It's a declarative, that is, it causes a value to be declared (i.e. displayed). In the previous exan
if you'd wanted to see the contents/afr without having to type its name, you could have put a
plus in front of it

+VAT §" RTKEGOC
2.17875 0.98 1.04825 1.35625

You've seen two ways of setting up a variable. One is to directly assign a value to it; the »arial
was set up in this way by the statementg " Q0. Ii9e7other is to assign a result to it: the variable
VATwas seup in this way by the statemextv" g" RTKEG" 6" C

What you can't do is use a variable name that hasn't had a value assigned to it. See what hap
you type:

A- BB
VALUE ERROR
A- BB

AN

No value has been assigned to varid@®éunless pu've usedBin your own examples). APL
therefore declares\aaLUE ERRORHoOw can you check on what variables do exist in your
workspace? This is a convenient point at which to introduce a couple of system commands.

System Commands

Loosely speaking, systecommands manage the environment in which you work rather than
doing calculations or manipulating data. You've already met one system command (don't type
unless you want to end the session!):

)OFF

The right parenthesis identifies system commalig®u useOFFor any other system command
without this parenthesis, it won't work: the interpreter thinks it's a variable name and (probably

Learning APL with APLX 36

produces an error message.
Here's a system command which lists the names of the variables you've got in y@pacer

)VARS
A C JOE PRICE VAT

Your list may be different if you've set up all the examples and some other variables.
Now try this one;

)WSID
CLEAR WS

You've asked the identity of the workspace and the system has toldsycallétdCLEAR WS

The same command can be used to change the identity of the workspace. Here you're changi
name toNEW

)WSID NEW
WAS CLEAR WS

The system seems more concerned about the old name, but it has in fact carried out your req
you'll find if you type:

)WSID
NEW

Though the name has changed, the variables are still there as you'll see if you again type:

VARS
A C JOE PRICE VAT

We don't need to keep these variables, so we'll use another system comuoieadtte
workspace:

)CLEAR
CLEAR WS

The variables are no longer there, as you can confirm by typing:
)VARS
And the name of the workspace has revertezl 8AR WS as you'll find if you again type:

)WSID
CLEAR WS

We'll cover other systemommands in later sessions. For now we'll return to assignments.

Learning APL with APLX 37

Character assignments

You could be forgiven for thinking that APL deals only in numbers. But it isn't so. Try this
assignment, taking care to put the single quote mark round the pieaé of te

C"§")CRN"YKNN"RTQEGUU" VGZV)
Now check what's ina:

A
APL WILL PROCESS TEXT

The characters between the quotes have obviously been pat ihy@u omit the quotes, APL
thinks it's dealing with an undeclared variable:

E" 9" EJCTCEVGTU
VALUE ERROR
E"§g"EJCTCEVGTU

N

This time include the quotes, then check that the assignment has worked:

E"9g")EJCTCEVGTU)
C
CHARACTERS

In fact, APLX caters for the forgetful as far as quotes are concerned. If you put an open@g qu
type your text, then press ENTER without putting the closing quote, APL will insert it for you:

OQTCN"§g") YGNN" DGI WP" KU"JCNH" FQPG
MORAL
WELL BEGUN IS HALF DONE

This prevents succeeding lines being treated as one very long text string, lsecgse you've
forgotten to close a quote. You can use any characters on the keyboard in a character assigni
That includes space (which is a character, albeit an invisible one) and all the symbols. You ca
even include the single quote character ifgbthugh that requires some special action.

Try this assignment:

NAMEg") YJCV) U" KP" C"PCOGA")
As you probably expected, you got an error message. APL can't distinguish between the
apostrophe in the text and the single quote marks round the text. If you need to include an

apostrophe (i.e. a single quote) insert another sopgie beside it like this:

PCOG" §")YJCV))U"KP"C"PCOGA")
NAME
WHAT'S IN A NAME?

Alternatively, you can use double quote marks like this:

Learning APL with APLX 38

PCOG"g"$YJCV)U"KP"C"PCOGA" $
NAME
WHAT'S IN A NAME?

APLX allows you to use single or double quatarks round the text. The opening and closing

guote marks must be of the same type; a quote mark of the other type doesn't end the text, as
example above shows.

Now let's set up a variable containing the charack&rs PRICE:
P"§g")PGV" RTKEG)

Obviously a variable containing characters can't be used in arithmetic, but try this all the same
Nx10

Well, as you saw you got a new kind of error:

Nx10
DOMAIN ERROR
Nx10

N

The domain of characters and the domain of numbers héigeedi rules and their members don't
mix. This applies even when characters look like numbers. Type this assignment, taking care
include the quotes:

QTYg") 452)

The fact thak30 is in quotes ensures it is treated as three characters with no more numerical
significance thamBcC You can prove this by trying to use it numerically:

QTY+5

DOMAIN ERROR
QTY+5
N

Multiple assignments

If you aregetting a bit tired of making all these individual assignment statements, APLX allows
you to set up several variables at the same time. Try typing:

*\CM" [CM+" g" 7
then see what values have been assigngdiandYAK They both should have the valieEach
separate name inside the parentheses has been given the Vayjwel want to set up some other

variables with different values, try typing:

* GP" OCTM" DWEM+" §" 32" 42"52

Learning APL with APLX 39

There you are, three at a single blow!
Displaying variables together

Though you can't use character and number variables together in arithmetic, they are prepare
appear together in displays.

N 10
NET PRICE 10

(If your version doesn't contain the same space bet®rR@&E and10, it's because you may have
left more orless space betwe®RICE and the closing quote when you made the assignmetit to

Here two character variables are displayed in tandem:

NAME C
WHAT'S IN A NAME? CHARACTERS

And this example shows two numeric variables displayed together (bytdiirstave to set them
up):

zZ" g" 3:

["g"5"3; :7
XY

18 31985

In this example we're mixing domains again:

NAME X C
WHAT'S IN A NAME? 18 CHARACTERS

That statement is true: the variatl@MEg does contain 18 characters, countingpéices
(including the one at the end). As you probably realise, any spaces you want have to be incluc
between the quotes. Inserting them between the variable names like this achieves nothing:

C C C
CHARACTERS CHARACTERS CHARACTERS

You can use characters in APL without putting them in a variable first. For example:

‘NET PRICE: ' 10
NET PRICE: 10

Joining lists together

The way we've been displaying lists together is more powerful than you may think. We've trea
it up till now as a means of displaying the contents of lists together. In fact it actually joins lists
that two single numbers form a tvedement list, or two character strings form one-glement
character object.

Learning APL with APLX 40

So when you entered the statement to producehe displayis 3 1985 , you in fact produced a
two-element list which could be used in arithmetic. You can prove this now by typing:

1+X'Y
19 41986

If you wanted to use the list formed kandy more than once, you could assign it to a variable:

Vgt zZzt |
4
18 31985

This has the advantage thaandy exist independently as well as being components of the list
which formsz. So operations done rdon't affect them. The following example addsto z and
then displayg X andy to shav that onlyz has been affected:

Vgt - 32
Z
28 131995
X
18
Y
31985

Here's an example with characters for a change:

EPCOG" §") DCUKN")
UPCOG" §g") DTWUJ)
PCOG" §"EPCOG" UPCOG
NAME

BASIL BRUSH

This example is aatlly rather complicated, as the contentsi®fiEare actually onlywo

elements. The first element is a list which contains the charaztens and the second is a list
which contains the character IERUSH This is an example of a special type of able known as a
nestedvariable- we'll be discussing this later in more detail when we've covered more of the
basics £ was nested too). If you want a preview of a later section, try @gjoglledrho) in front

of some of these variables and see what it does.

Joining and merging variables

If we want to join the characters in the last example to form a single list, we have to use a new
symbol, (comma). The comma tells APL to merge the asttdts left and right. Let's try the last
example again:

PCOG" g" EPCOG. UPCOG
NAME
BASIL BRUSH

This timeNAMES a list of 11 characters. In the next chapter we'll be looking at how to use some
new symbols to tell the difference between thisgawariable and its nested variant. The comma

Learning APL with APLX 41

is in fact a function in its own right, and the function is performs is caléehation

Simple and nested variables

So how does APL work out which variables or lists are lists of lists (which is anoth@fway
describing our nested variable) or just simple lists?

There are some easy rules to follow when typing in data.

Single numbers and characters are interpreted as making up simple lists. So here is a list of 4
numbers:

PERREg" 3" 4" 5" 6
and here is another list of five characters:
OKTGKNNG" ") HKNNG)

If some of the numbers are enclosed by parentheses they are treated as a single item in the
resulting list:

RKGTTG" g" *3" 4" 5+"*6"7"8" 9+
So herePlERRE is a list of two ligs, one of which is three long and one of which is four long. To
make a list of character lists, all you need to do is to use groups of characters, each of which ¢

enclosed by quotes. So to make up a list of three character lists:

HTCPEQKUG" g "JEWEGTFILLE'

Mixed variables

Just to complete the story, APLX allows a variable to have both character data and number ds
it. You won't be able to carry out arithmetic on the character part, but this is a useful way of st
characters and mbers that 'belong' together:

PHONESg ") DKNN) " 799554") HTCPM) ": : 8553

PHONESWiIll be four elements long, and will be alternately character lists and single numbers.

Summary

The symboly assigns numbers or characters to a named variable. The right argument is the ve
to be assigned. The leftgument is the name of the variable.

Variable names are formed from any combination of the letters of the alphabet (in uppercase «
lowercase) and the numerals 0 to 9, together with the charge®erand™. They must start with a
letter orGor &

Any numeric value can be assigned to a variable. This includes a single number, a list of numl

Learning APL with APLX 42

or the result of a calculation.
Any character on the keyboard can be assigned to a variable.

Character strings assigned to a variable are enclosed in single. Juoieslude a single quote in
a character string, type another single quote immediately beside it, or use double quotes.

Character variables can't be used in arithmetic.

More than one variable can be assigned at the same time.

The contents of variablestée displayed together merely by typing their names together.
Variables can contain a mixture of numbers and characters.

Variables are made up of single numbers or characters, in which case they are called simple
variables, or their elements can be likismselves, in which case they are called nested variable:

The comma performs the catenate function. Variables joined by it can be treated as a single
variable.

System commands manage the environment provided by the system. The following were
mentioned irthis chapter:

)VARS
)WSID
)CLEAR
)OFF

Practice

Please experiment with setting up and displaying character variables for a few minutes before
do the problems. Clear the workspace when you've finished,

Problems

Q1. Enter statemds which:

a) Assign the numbee= 2 2007 to three variables called respectively andy.

b) Assign the characteT®DAY'S DATE: to a variable calledATE

¢) Produce the displayoODAY'S DATE: 2222007 (Use the correct date if you prefer.)

Q2. Set up avariablecoNnwvhich contains a constant for converting pounds to kilos. (1 Ib = 0.45
kg and 14 Ib = 1 stone) Usi®NMVo convert your weight (to the nearest stone) into kilograms.
Reduce the result by 10%, round it down, and display it.

Q3. The cost pries of four items of stock ae8 6 12 4 respectively. The markup on these items i

100%. Three other items cost respectivelg 13 and 7. Their markup is 75%. Calculate the fully
inclusive price of each item (with VAT at 17.5%). Display the prices (roding@ with the

Learning APL with APLX 43

caption:
'PRICE+VAT: '
Q4. TEST1 contains a student's exam marks for each of seven subjects (65 72 54 80 67 60 59)
TEST2 contains his marks for the same subjects gained at a different test (75 70 60 74 58 61 5
Produce a list condisg of his higher mark for each subject.
Q5. Which of the following will produce error messages? Why?
a) RATEg")509z5)"
b) 32-32")¢g43)

C) 100xRATE

d U[ODQNU"g") 1 >i?3J)

e) 3+232
Answers
Ql.a)
F"g" 44
o" §" 4
{"g"4229
or

*E"O"[+"§" 44" 4" 42209
b)
FCVG" §") VQFC[)) U" FCVG<)
or
FCVG" §" $VQFC[) U"FCVG<$
c)

DATEDMY
TODAY'S DATE: 22 2 2007

Learning APL with APLX 44

Q2.

EQPX" §" 0676
" 0: EQPX06350636
74

(the weight used in this calculation was 13 stone,)

Q3.

NKUV3" g"406: "8"34"6
NKUV4" §g"3097638"35"9
XCVRTKEG" g"L"3039706" NKUV3. NKUV4
'PRICE+VAT: 'VATPR ICE
PRICE+VAT: 19 1529 10 33 27 15

Q4.
VGUV3"g"87"94"76":2"89"8
VGUV4" g"97"92"82"96"7; "8

VGUV3"L"VGUV4
7572608067 61 59

Q5.

b) produces @OMAIN ERRORY0uU are trying to addo to the numbeto and also the characters
g 4 3ltis this last bit that doesn't work.

c) produces ®OMAIN ERROR RATEWwas defined as a string of characters in example (a) and you
can't multiply characters and numbers.

e) produces a0OMAIN ERRORYou cannot add numbers and characters.

Learning APL with APLX 45

Tables

This is another practical session, so please continue to type the examples you see in the man

The general subject is tables, and the first topic in connection with tables is how to set them u
That's a topic that could involve you in a lot of keying. (Imadiyping in 50 different values to

fill a modest fiverow by tencolumn table!) To avoid such drudgery we'll look first at two
functions that will generate the numbers for you.

The ? function

The? function (usually calletRandom, Roll or Deal) generatesandom numbers. Here's an
example:

? 100
53

You asked for a random number in the range 1 to 100. You probably didn't get 53. That was tt
oneargument form of It returns a single number between 1 and the number you specify as the
right-hand argumet.

The twaargument form will be more useful for filling tables because it generates as many
numbers as you ask for:

50 7 100

On your screen you should have 50 numbers in the range 1 to 100. Look at your numbers car
and see how many duplicatgsu can count in 20 seconds.

*kkkkk

Given up? In fact you won't find any. Thdunction generates unique random numbers in the
given range. That's why this example produces an error message:

20?10
DOMAIN ERROR
20?10

AN

The danain of numbers in the range 1 to 10 can't supply 20 different whole numbers. You can
a variable as the rigittand argument of We'll set one up then use it :

TCPI G" g" 37
3 ? RANGE
1513

Equally, you can use a variable to specify how nramgom numbers you want:

Learning APL with APLX 46

SV["¢g"9
QTY ? RANGE
5141011524
And you can assign the result to a variable too:

DKPI Q" ¢g" SV["A"TCPI G
BINGO
614923116

The S function
This is an example of thfunction (calledota or Index and found above the 'I' key):
§322
Your screen should now be filled with the numbers from 1 to 100 in ascending order. We're us
the oneargument form o86. It generates the series of numbers from 1 to whatever number you
specify as its righhand agument.
Here's an example which puts the series from 1 to 10 in a variable xalled
z"g" S32
X
12345678910

Now we can safely tackle the topic of tables. But for clarity, we'll start by entering values
explicitly, rather than generatirigem randomly or producing them with teéunction.

Setting up tables

This statement will take the 12 numbers on the right of tmbol, and set them up as a fdyr
three table:

6"5"8§"32"42"52"62"72"82"92":2",;2"322"332"342
10 20 30
40 50 60
70 80 90
100 110 120

§ (calledRho, Shapeor Reshapeand found above the 'R’ key) is a function and like any other
function, it operates on arguments. We're using theangament form os.

(We'll see what the or@rgument form does later in the pher.)

43 § "102030405060 708090 100110120

The argument to the left specifies how many rows and columns are in the table. The argumen
the right specifies what data is to be put into the table.

Here again is the table produced by the éxstmple, this time with the rows and columns labelled

Learning APL with APLX a7

coll col2 col3
rowl 10 20 30
row 2 40 50 60
row3 70 80 90
row4 100 110 120
You always specify the number of rows before the number of columns, and APL fills the table

row-by-row rather than columby-column. (This may seem a trivial point, but if APL first filled
column 1, then column 2 then column 3, the effect would be quite different).

The data to be put in the table can itself be in a variable. This next statement @utdda r
numbers in the range 1 to 100 into a variable calkenk

FCVC"§g"34"A"322
Now use the function again, but specifyAaTAas the righthand argument:

6"5"8§"FCVC
1557 30
515097
18 26 38
67 22 69

(Your numbers are unlikely to be the same

The next example looks doomed to failure because there are insufficient numbers on the right
fill a table of the specified dimensions. But try it anyway and see what APL does:

6"5"8§"3"4"5"6"7

As you saw, when the numbers ran out, APL went bactke first number and went through them
again, giving a table like this:

123
451
234
512

It follows that if you supply only one number, APL will use that to fill the whole table:

5"7"8§"3
11111
11111
11111

On the other hand, ifop supply too many numbers, APL uses what it needs to fill the table and
ignores the rest:

Learning APL with APLX 48

123
456

Try setting up some tables before you read on. Remember that you canuaediddunctions.
Arithmetic on tables
Now please set up a®w 3-column table calledALES containing the numbers shown:

UCNGU" g"5"58§42"35":"52"65"6:"5"72"43
SALES

2013 8

304348

35021

Arithmetic onsALESwill automatically affect every number in the table. For example:

SALESx10
200130 80
300 430 480
30 500 210

Suppose you now set up another table called,rsagEgs, will you be able to do operations like
SALEStimesPRICES? Let's find out:

RTKEGU" g" 4"5"8§"43"4"34"69"55"3
SALESxXPRICES

The attempt caused arrer

LENGTH ERROR
SALESxPRICES

AN

A LENGTH ERRORNessage means that the arguments contain different numbers of elements. T
problem, obviously, is tha&ALESIs three rows by three columns, and therefore contains nine
numbers, whileeRICES is two rows by three columns, and therefore contains six numbers. How
could APL know which items you want multiplied by which? Since it doesn't, it gives an error
message.

Let's redefine theALEStable so that it too contains six items:

SALESg" 5" 4" 8" UCNGU
(We used the numbers alreadysiiLESas data. The effect of the statement is to take the first six
numbers in the oldALEStable and rearrange them as three rows and two columns to form the 1

SALEStable.)

Now thatSALES like PRICES, cortains six numbers, let's try the multiplication again:

Learning APL with APLX 49

SALESxPRICES
LENGTH ERROR
SALESxPRICES

N

We're still getting an error message. If we look at both tables the problem will be apparent:

SALES
2013
8 30
43 48
PRICES
21 212
4733 1

The tables may now have the same number of items, but they're still a different 'shape’. It's
impossible to know, with any certainty, which itemsiaLES corresponds to which item FRICES.

We'll have to redefineALESagain so that it hakié same number of rows and columneRISES:
UCNGU" g" 4" 5" 8" UCNGU
(Again we've used the numbers alreadganeEsas data for the new version of the table.)

Now we'll check thasALESandPRICES are the same shape (i.e. have the same number of rows
and columns):

SALES
2013 8
3043 48
PRICES
21 212
4733 1

They now match exactly in shape and size, so we can try again.

SALESxPRICES
420 26 96
1410 1419 48

Success at last! The elements in the two tables now migtabr conform, ad arithmetic
involving both tables is possible. Let's check by trying another operation on them:

SALES - PRICES
11174
~17 10 47

That worked too. (Remember that the previous multiplication didn't change the contents of the
tables.)

Incidentally,you don't have to create every table explicitly. You can create one simply by
assigning a result to it. Here you're creating a table catiedL

Learning APL with APLX 50

VQVCN" g" UCNGUOBRTKEGU
TOTAL

420 26 96

1410 1419 48

Before you read on, practice constructinigiéa and doing arithmetic on them. Make use of’the
ands functions to set the tables up. Don't forget about taedr functions. They work on tables
too.

Catenating tables
You can catenate tables just as you catenated other variables in the pressars se

SALES,PRICES
2013 821 212
3043484733 1

The tables being catenated must have the same number of rows, but don't have to have the s
number of columns.

This next example creates a tnaw two-column table calledITTLE filled with 1s, and a twerow
six-column table callesveDIUMilled with 5s. Then it catenates the tables and puts the result in
BIG:

w»

LITTLE g" 4" 4" §" 3
OGFKWO" g"4"8"§"7
DKI " g" NKVVNG. OGFKWO
LITTLE

11

11
MEDIUM

555555

555555
BIG

11555555

11555555

Again, notice that though the catenated tables have different numbers of columns, they both h
the same number of rows.

Catenation supplies one of many solutions to the problem of arithmetic being possible only on
tables of equal size. Suppose you wanted toLaddlE to MEDIUM

LITTLE+MEDIUM
LENGTH ERROR
LITTLE+MEDIUM

AN

You can'tbecause they're different sizes. They both have two rows|TIwe has two columns
while MEDIUMhaS Six:

Learning APL with APLX 51

LITTLE
11
11

MEDIUM
555555
555555

The following example shows howrTLE can be catenated with a table of zeroes to paat itoo
the same size ageDIUMSO that the addition can take place:

"2

w»

\ GTQGU" g" 4" 6"
ZEROES

0000

0000
NKVVNG" §" NKVVNG. \ GTQGU
LITTLE

110000

110000
LITTLE+MEDIUM

665555

665555

The addition took place soessfully. Presumably we wanted the originafrLE to be added on to
the lefthand end oMEDIUM If we wanted it on the other side we should have specified (resetting
LITTLE first!):

NKVVNG" §g" 4" 48§83
NKVVNG" "\ GTQGU. NKVVNG
LITTLE+MEDIUM

555566

555566

It's because that kind of ambiguity exists that APL won't do arithmetic on data of unequal size.
Selecting elements
You may be wondering how you select single elements from tables.

First set up this table (using the numbers showmerahan the function), then we'll select
individual elements from it :

»
N

+TABLEg" 6" 5" § "34"37"6"33"9"3"38":"42"3;"
21215
411 7
116 8

2019 9
Remember that the table consists of four rows and three columns.
To select the in the bottom row, righimost column, type:

TABLE[4;3]

Learning APL with APLX 52

You've used the row number <4>, and ttolumn number <3>, to identify which element of the
table you want. Before you read on, see if you can enter a statement which adds the number |
3 column 3, to the number in row 4 column 2. Make sure you use the square brackets and seyf
the rownumber from the column number with a semicolon.

*kkkkk

You should have entered:

TABLE[3;3] + TABLE[4:2]
27

Now see if you can replace the number in row 3, column 2 with the result of adding the numbe
row 1, column 2, and row 2, columni2ere's the table again with the numbers marked:

2 12 15
4 11 7
116 8
2019 9

*kkkkk

That shouldn't have been difficult as long as you counted the rows and columns correctly, and
remembered the semicolons. You no doubt typed:

TABLE[3;2] " VCDNG] 3=4_"-"VCDNG] 4=4 _
CheckTABLE make sure that row 3, column 2 now contains the sum of rows 1 and 2 column 2:

TABLE
2 12 15
4 11 7
123 8
2019 9

It's quite easy to select entire rows or columns. Here we select all three elements:in row 1

TABLE[1:1 2 3]
21215

As before, the number before the semicolon denotes the row while the number, or in this case
numbers, after the semicolon denote the column(s). There is, however, a shorthand way of
selecting whole rows or columns. The foliog statement does the same as the last, that is, it
selects all columns in row 1:

TABLE[1;]
21215

Using the same principle, see if you can replace the numbers in column 3 with the sum of the
numbers in columns 1 and 2.

Learning APL with APLX 53

K*kkkkk

(In the cours of some of these operations you may be getting an error message saying that yc
made anNDEX ERROR The process of picking elements out of a table is called 'indexing'. A
mistake is therefore referred to as an 'index’ error.)

To add the first two caimns and put the result in column three you could have typed:

TABLE[1 2 3 4;3] g" VCDNG] 3"4"5"6=3_"-"VCDNG] 3"4"5"6=4
TABLE

21214

41115

12324

201939

Alternatively you could have used the shorthand way:

VCDNG] =5_"§g" VCDNG] =3 _"-"VCDNG] =4 _
You can, of course, select elements from two separate tables and do acittmtegm. If you still
have the tableSALESandPRICES in your workspace, the following statement will multiply the

number in row 1 column 1 gfALESby the number in row 2 column 3 PRICES.

SALES[1;1] x PRICES[2;3]
20

Incidentally, indexing caalso be used to pick single elements out of lists. With lists, of course,
only one number is needed to identify the element required:

LIST g":"3":2"6
LIST[2]

1

Dimensions

A quick digression about dimensions is in order before we tackle the next topic. APL regards ¢
as having dimensions.

A single number, or character is like a point in geometry. It exists but has no dimension

A list is like a line. It has one dimension, length.

The tables we've looked at are like rectangles. They have two dimensions, height and
length.

1 Threedimensional 'tables’, or ‘arrays’, as they are more often called, are like cubes. The
have depth, height ariength.

Arrays of up to sixty three dimensions are possible in APLX, but we won't attempt to represen
them!

The thought of thredimensional data may intrigue you, but in practice it's quite mundasi¢éhe
next example will reveal. Suppose the ordinarg-dimensional table you're about to create

Learning APL with APLX 54

represents the number of each of four products sold by each of six salesmen:

UCNGU" g" 8" 6846 A72
SALES

53422 36

46 40 18 10

3923 441

5027 813

1242 9 3

19473035

The salesmen are the rowvitse different products are the columns:

product 1 product 2 product 3 product 4

salesmanl 5 34 22 36
salesman 2 46 40 18 10
salesman 3 39 23 4 41
salesman 4 50 27 8 13
salesman 5 12 42 9 3
salesman 6 19 a7 30 35

Now suppose i this table relates to one sales region and that there are three such regions
altogether. The following statement will create a thilgeensional array which represents this
situation:

+SALES " 5" 8" 6894A322

On your screen are (or should be) three blocks of numbers, each of six rows and four columns
These are the three planes, so to speakaidfs To createsALESYyou specified three dimensions
as the lefthand argument af (see above). To &t a particular element frosaLES you also

have to give three numbers:

SALES[2;5;4]
20

You specified that fronsALESyou wanted plane 2, row 5, column 4. In other words you wanted
know the quantity of product 4 sold by salesman 5 in area @v& mow seen what is meant by
threedimensional data, and are aware that APL treats data as having dimensions. But the key
understanding the next function is to remember that a single number or single character has n
dimensions.

Enquiring about the size of data
As you've seen, theefunction used with two arguments puts specified data into a specified num

of rows and columns. The same function used with one argument allows you to enquire about
size (or 'shape’) of existing tables and other et

Learning APL with APLX 55
To remind yourself of the size sALES(the threedimensional data structure you recently
created), type:

SUCNGU
364

As you see, you've been given the size of each dimens@xLeE Now create a twalimensional
table and ask the size ¢ft:

VCDNG" ¢g" 7" 5" 8" 37" A" 42
SVCDNG
53

You've been given the size of each of the table's two dimensions. The height of the table is fiv
rows, the length is three columns.

Next create a variable containing a list of numbers and ask its size:
NKUV"§g"3"4"5"6"7"8
§NKUV

6

The list is six numbers long.

Finally put a single number into a variable and ask its size:
PWO" g" 456

§ PWO

The variableNuvhas neither length, height nor any other dimension. It is, as we've already said
the equivalent of a point. APL therefore gives an empty response. By the way, the item enquir
about doesn't have to be in a variable. Here we enquire about the size of a directly quoted nur
value:

§34"83"724"3"48"2"33
7

And here we ask for thaze of a string of characters:

§) UJCODQNKQUKU)
12

Before you read on, use the emgument form of theé function to enquire about the size of some
variables in your workspace. Remember that you're really asking about the size of each varial
dimensions.

Tables of characters

Characters can be arranged in rows and columns too:

Learning APL with APLX 56

CNH" g"5"7"8§"") CDEFG)
ALF

ABCDE

ABCDE

ABCDE

But compare the effect of this next statement with the effect of the last:

PWO" g"5"7"8§" 34567
NUM

12345 123 45 12345 12345 12345

12345 12345 12345 12345 12345

12345 12345 12345 12345 12345

The fact is that2345 is onenumber, whileABCDE' is five characters. So each single character ir
the first table is equivalent to each occurrence2sds in the second tdé. Despite their different
appearances, both tables contain 15 elements. Notice, though, that while APL has no scruple:
about putting spaces between the occurrencessa$ in the numeric table, it doesn't insert space
in the alphabetic data. Since spas itself a character, it expects you to put in the spaces you
require.

Here are a few examples to give you some experience of the way alphabetic data behaves:

O[PCOG" ") I QTUWEJ)

30[PCOG
;
5" 9" &" O[PCOG
GORSUCH
GORSUCH
GORSUCH

In the las example the seven charactersG0RSUCH' were arranged as three rows each of seven
columns.

In this example the same characters are arranged in three rows of 14 columngySinee
contains seven characters, this fits quite neatly, though a coluspacés between the present
columns seven and eight would be an improvement.

314 §" O[PCOG
GORSUCHGORSUCH
GORSUCHGORSUCH
GORSUCHGORSUCH

In the next example, the characters fill a three by eighteercolumn table. This is not such a
neat fit:

5"3:"8§"0O[PCOG
GORSUCHGORSUCHGORS
UCHGORSUCHGORSUCHG
ORSUCHGORSUCHGORSU

We'll try again.First we'll put a space at the end of the original character string, making it up to
eight characters. Then we'll define a table with sufficient columns for the eight characters to be

Learning APL with APLX 57

printed in their entirety five times on each of three rows.

MYNAMES ") | QTUWEJ ")

§0[PCOG
8

5"6258" O PCOG
GORSUCH GORSUCH GORSUCH GORSUCH GORSUCH
GORSUCH GORSUCH GORSUCH GORSUCH GORSUCH
GORSUCH GORSUCH GORSUCH GORSUCH GORSUCH

In this final example, this is the result we want to achieve:

ADAMS
CHATER
PRENDERGAST
LEE

See if you can define a table which achieves that result before you look at the solution below.

*kkkkk

You want a table of four rows. The difficulty is working out the columns. The columns must
accommodate the longest name, whichRRENDERGASWith 11 characters. However, merely to
put the names into four rows of 11 columns won't achieve the desired result:

411 §") CFCOU"EJCVGT"RTGPFGTI CUV" NGG)
ADAMS CHATE
R PRENDERGA
ST LEEADAMS
CHATER PRE

The other names must he padded out with spaces so that each name plus following spaces e
fills 11 columns. (For clarity, each space is represented here by a dot.)

6"33"8§")CFCOUOOOOOOEJCVGTOOOOORTGPFGTI CUVNGGOO

There's some good news for you if you found that a tedious exercise. APLX has a special faci
calledT D Qwhich arranges data into rows and columnsytar without any of that bother. (It's a

system function and you can read about it in the APLX Language Manual). Doing the counting
yourself on this occasion has, however, given you a chance to see how character data behave

Mixed tables

You might remembethat, in the last chapter, we made up lists which contained both character:
and numbers. The examples that we have used so far in this chapter have been either charac
numbers. We can make up mixed tables in exactly the same way that we madsr tgotek.
Here's one:

Learning APL with APLX 58

OKZVWTG"g"5"58§)C)"3")D)")E)"4")F)")G)"5")H)
MIXTURE

AlB

Cc2D

E3F

You can't, of course, carry out arithmetical operations on mixed tables, but you can reshape tt
with § and select elements just as you did with waditables. Try making up some mixed tables
yourself. APLX will try to display the contents of these tables in as neat a fashion as fitocan
easy matter when you have mixtures of characters and fractional numbers in the same columi
you want to invetigate these rules, have a look in the APLX Language Manual.

Nested tables

Just to complete the picture, we can make up tables that contain other tables or lists. Again wi
follow the rules we discussed earlier when making up nested lists. We will us¢heses and
guote marks as we did with lists. Here's an example:

PGUV" g"4"58*4" 45S6+"*S7+")C"PCOG)"*4"68S: +"45"
NEST

12 12345 ANAME

34

1234 23 NAME
5678 NAME
NAME

What isNESTmade up of? It's two rows deep and three columns wide. The first entry in the firs
row is a 2 row 2 column table made up of numbers, then we have a list of 5 numbers and a lis
characters. The second row starts with a numeric tél@deaws 4 columns, then has a single
number and ends with a 3 row 4 column table of characters. Just to check, let's see what the
of NESTIs:

SPGUV
23

Depth

In order to cope with the added complication of nested data, either tables or lists, we have to t
in a new function , calleddepth.

Depth gives an idea of the degree of nesting that can be found in a variable. This becomes
important when you bear in mind that we could make up another variable where some of the
elements are themselves nested variables and so on.

A single number or character has depth O

1 67

Learning APL with APLX

and a list has depth 1

1 3"4"5
1

So does a table:

I 4" 4 8§55%6"

1

59

Lists and tables which are made up entirely of single numbers or characters will all have deptt
When at least one element of a list or table already has a depth of 1 (when it is itself a list or a

table), then the overall depth of the variabl 060 our sample variable has a depth of 2:

I PGUV
2

This idea extends when we make more complicated examples. If one element is of depth 2, tt
the overall depth of the object is 3. The depth of a variable is always set by the deepest amou

nesting found within it.

Try this:

BIG_NESV" ¢ "

SDKI aPGUV
2

I DKl aPGUYV
3

PGUV" PGUYV

BIG_NESTIis made up of variables that already have a depth of 2, so it has depth 3. In fact, it's |

up of the two objectsEsTforming a two element vector.

Summary

The functions introduced in this sessiwere?, S ands. (See APLX Language Manual for

definitions.)

Some points worth remembering are:

1. Tables are specified and filled in row order.

2. Tables involved in an arithmetic operation must have the same number of rows and columr

3. Catenate, () joins tables with equal numbers of rows.
4. Data has dimensions:
- a single number or character has no dimensions

- a list has one dimension, length

Learning APL with APLX 60

- a table has two dimensions, height and length
- data in APLX can have ujp sixty-three dimensions.

5. The result returned by the easgument form of is the size of each dimension of the data you
enquired about (e.g. how long it is, or how deep and high).

6. In character tables, every character, including space, is one column.

7. Tables can be made up of a mixture of numbers and characters.

8. Tablescan be made up of lists and other tables.

9. Nested tables have depth.

Practice

The strength of APL is that almost any logical combination of functions is possible. This mean
(for example) that the result of an enquiry about a variable's size can be plasggethe line to

form the argument to the next function:

(§) CDE) .) FGH) +"-"8) 1 JK)
9

Or to take another example, if you've defined a table like this:
VCDNG" g" 32" 32"8§322"A"322

and you now want to select the first nine numbers in row 1, there is an alternative to typing
laboriously:

TABLE[1;1234567 8 9]
You can instead let th&function generate the index for you:
VCDNG] 3=S;

These examples are not particularly significant in themselves. They merely indicate the variet)
possibilities that exists if you care to experiment. When you've &disfour experimentation, try
the problems provided.
Problems
Q1. Set up a fourow onecolumn table calleMILES containing:

300 42 25 140

And a similarly shaped table calledTEScontaining:

27515275275

Learning APL with APLX 61

Multiply RATESby MILES, then muiiply the result by 0.01 to produce a table calle@ENSES

Q2. Change the number in column 1 row 3WiEES from 25 to 250. Again, multiplRATESby
MILES and the result by 0.01 to gi&XPENSESthen reformaEXPENSES0 produce a oreow

four-column tdle.

Q3. Definex as a thregow tencolumn table containing random numbers, @ a thregow
four-column table also containing random numbers. Adly, first taking whatever steps you
think necessary to enable the operation to take place.

Q4. UsingtableX created in problem 4, add the first and second rows and replace the third row
with the result of the addition.

Q5. Create a table which will look like this when displayed:

—To>»0X1T0O-Z

Q6. What wil be the result of each of thesetatements? Predict each result before you press
ENTER.

a) §") CDE" FGH)
b) §"6:2"2"304
C) VCDNG" g§"32"n2"8"322"§"3222"

SVCDNG

u»

d) ") T)
e) §")6:2"2"304
f) VCDNG" §"483328"8"n22"

SVCDNG™"

Learning APL with APLX 62

Answers

Q1.
OKNGU" g" 6" 3"
TCVGU" g"6"3"
- GZRGPUGU" g"

N O W
N DO
w onN
O ON
< w b

82.5
6.3
6.875

38.5

Q2.
OKNGU] 5=3_"§g" 472

- GZRGPUGU" g" 3" 6" 8§" GZRGPUGU" §"202306TCVGUO OKNGU
82.56.368.75 38.5

Q3.

NN

3 5
"6"8§"34"A"3
8" 8§ +

Since the problem didn't say which columnxof were to be added to, you may have put the
zeroes on the other side:

Q4.
Q5.

" 3"3")OKETQCRN)

Q6. You saw the answers to this problem when you entered the statements.

Learning APL with APLX 63

Writing a Function

The/ operator

You may already have looked this up in the APLX Language Manual as suggested at the end
session 1. But sircit's used in one of the functions you're going to write, we'll cover it briefly jus
in case/ is calledSlashor Reduce

Note that in the context in which we're describing it heiie,an operator not a function; it
modifies or extends the operatiohtiee functions it's used with. Here's an example of its use:

+/1634
14

What/ did was to extend the operation+o$o that the expression effectively became:
1+6+3+4
Here's an example using multiply:

x[1234
24

Multiply was used on eaafumber in the list like this:
1x2x3x4
Let's see how this works on a table:

VCDNG" g" 5"5"§8S;

TABLE
123
456
789

+/ TABLE
61524

It won't take you a moment to work out what APL has done to produce the three nartters
24.

Obviouslythey're the sum of the numbers in each row. (If you want to make thygeration
apply to columns instead of rows, this is easily done. It's explained under the eqtryAses, in
the APLX Language Manual.)

Remembering APL's rule of working from rigiut left, and the fact that one function's results are
data to the next function down the line, enter an expression that wikhiaine numbers in the
table.

*kkkkk

Learning APL with APLX 64

This is one solution:

+/ +/ TABLE
45

We know that the result of the first (ie thght-hand) part of the statementsias 24 . So these
three numbers are the data for the-kefhd+/ . Their sum isi5.

You can add the numbers in just one column by the usual method of indexing.TBLEagain
followed by a statement which adds themers in the first column:

TABLE
123
456
789
+/ TABLE [;1]
12

Here's a useful combination: the functionsed withv selects the largest number from a list:

Lr197"94"9:";2"8; "99": 3"
90

While the equivalent statement naturally produces the smallest number:

r{4"97"94"9:";2"8; "99": 3"
69

In case it crossed your mind thaandr were being useth their oneargument forms in the last
two examples, remember that whaloes is to put the functionm,(or whatever) between each
element of the data it's applied to like this:

srv"L"94"p"9:"p";2"L"8;"L"o99" " 3" L"

Here's a final example of thes@ of/ for you to ponder before you go on to the topic of function
definition. What does this example do?

"5"e6"7

z" g
-1 4

“ogon
Z+E

(722305

User Functions

Hitherto your APL statements have worked their way up the screen and, when they reached tt
top, have disappeared without trace. You're about to learn how to preserve statements, or grol
statements, so that you can summon them back for execution or amendment at any time. In o
words you're going to find out how to write a function. A wvdefined function in APL is like a
program in another language. It has a name and consists of APL statements. When you quote
name, the statements are executed consecutively, or in whatever order you specified when yc
defined the function.

Learning APL with APLX 65

Writing a Function

In most versions of APLX, there are two ways to create or edit a function.

The most commonly used way is to udelascreen editor which allows you to edit the function
text very easily in an editor window. The editor is either invoked through fleaion's Edit
menu, or with theeDIT system command (or theG F system function), e.g.

)EDIT FUNK

Here is a snapshot of an editor window on a Windows system, showing a function called
DEMO_Taskbar being edited:

Edit HELPSYSCLASS: DEMO_Trackbar (= B 3
File Edit Attributes Tools Window Help

[ol DEMO_Trackbar:'v‘E:BSIEJ\::IC:ZZE_T?AE(:ZZE_CLE:SE:Ix.;ZEVIE. -~

[1] |a Sample function demonstrating use of the Trackbar object T
[2] |a

[3] |a The windows version of this function demonstrates features not

[4] |a available on the Mac or Linux. The Mac/Linux Trackbar is very simple.

[5] |OI0<l

[6] VERSIONe«'O' OWI 'version'

[71 :If VERSION[2]=1 2

[81 A Running under Windows: 3

[91 DEMO«'0' ONEW 'Dialog' ¢ DEMO.titlee'Trackbar Example' ¢ DEMO.scaleel

[10] DEMO.myTrackbar.New 'Trac ~' ¢ DEMO.myTrackbar.wheree2 1

[11] DEMO.myTrackbar.styleel ¢ DEMO.myTrackbar.valuee35

[12] DEMO.Labell.New 'Label’' o 0.Labell.whereel 1

[13] DEMC.Labell.captione'Move er to set threshold

[14] DEMO.Label2.New 'Label' ¢ .wheree6 1 o DEMO.Label2.color«255 3
[15] DEMO.LabelZ.captione'’

[16] A

[17] A Create a 1ittle callback which will run when the user closes the window

[18] A This prevents the window being closed asynchronously

[19] DEMO.onClosee's'

[20] A

[21] A Must show window now, otherwise it won't appear until after loop below

[22] DEMO. Show

[23] A

[24] iWhile 1

[251] A Loop round until the CB_CLOSE callback has run

[26] A Set some random value 1in the 'selection' property

[27] DEMO.myTrackbar.selectione(0,?80) 2

KB:UniAPL |Fn: DEMO_Trackbar < [e

For backward compatibility with old APL systems, APLX also supports a primitivealiagime
editor called théel editor. To enter definition mode drcreate a new function you typ€Del)
followed by the function name. If you type nothing else, you are defining a function that will tal
no arguments:

h HWP M

You will probably never need to learn the Del editor. If you do accidentally tysipgharacter to
enter definition modgust type anotheti to get back to calculator mode.

../images/aplx_editor.jpg
../images/aplx_editor.jpg
../images/aplx_editor.jpg
../images/aplx_editor.jpg

Learning APL with APLX 66

For clarity, we will list functions here as though they were entered using the Del editor, viihere
character is used to mark the start and end of the function listing. Listing functions in this way
makes it clear at a glance that you are looking at a function. It's also a convention commonly u
in other APL documentation on the Internet.

If you are using the normal fusicreen editor, yodo not typetheh characters or the line
numbers.

*kkkkk

APL requires to know the name of the function you're defining. Your first function will be called
TRY1S0 enter:

)EDIT TRY1

Enter the following function (Remember that you don't typentbethe line numbers):

hVT[3
[1] 'Type some numbers:'
2] PwWO"g"T
[3] 'Totalis: '(+/NUM)

h

(TheT symbol is called Quad and is found on the ‘L' on the keyboard. Whatltes will be
quite clear in a couple of minutes)

Here's the complete function shown in an APLX editor window. Don't worry aboublkers for
now; APLX uses syntax colouring to show different types of symbol.

' Bl Edit CLEAR WS: TRY1 (= B S
| File Edit Attributes Tools Window Help

[01 [TrRY1

[1] Tvpe some numbers:

| [2:‘ \'“n—vv('a

[3]1 |'Tota (+/NUM)

[|KB:UnidPL | Fn: TRYL

To save the function, select 'Save (fix) in workspace' fitwenetlitor window's File menu and then
close the window.

Learning APL with APLX 67

Running a Function

Now you're ready to run the function you've written. Type the function name to run it:
TRY1

Type some numbers:

T<

Type in a few numbers as the message suggests:

93702
Total is: 102

If you get errors while running a function (e.g because you made a typing mistake), APLX will
normally ask you whether to show the Debug window:

' [APL Stopped |) 3

':8:' Stopped at TRY1 line number 2

For now, just answer 'No' and then yseIT TRY1 to get back to the edit window, where you can
correct your mistake. Alternatively if you're ready to explore further, an¥es' and then correct
the mistake directly in the Debug window.

Now you've seen what the function does, we'll go very briefly through the APL statements thal
make it up.

T Line 1 was entered as:

‘Type some numbers: '

It behaves exactly as you'd expect. &ihhe function is executed, the text in quotes is
displayed on the screen.

1 Line 2 consisted of;:
PWO" g" T

Quad (), as used here, tells APL to wait for something to be typed in on the keyboard. So
this line means 'Accept some input from the keyboard, tesigmthat input to the variable

NUM Line 2 was responsible for the invitation to type (ie the Quad symbol and colon) which
appeared after the line of text when the function was executed.

Learning APL with APLX 68

1 Line 3 was as follows:
Total is: '(+/NUM)
Working from the rightijt first adds the numbers mumthat is, the numbers which were

typed in, then it displays the result preceded by the texdl'is: ". We have made up a
nested list (remember the rules about parentheses).

Editing a function

Now suppose you want to addine to this function, telling the user how many numbers he or sh
typed in. To modify the function, just open a new edit window:

JEDIT TRY1

You want to insert a step to display a message saying how many numbers were entered. This
should go beveen the present lines 2 and 3:

'You have entered' (SPWO+")pwodgt u)
Run your amended function and check that it works:
TRY1
Type some numbers:
T<
93702

You have entered 4 numbers
Total is: 102

How about inserting yet another step? You no doubt recognised that the statement you were |
ponder earlier in this chapter worked out the average of a group of numbers.

Why not insert a step at the endt&y1which displays the average of the numbensun? Rejoin
the manual when you've done that.

R
Line 5 of TRY1should now look like thisthough your text in quotes may be different:
'‘Average is:' (+/NUM)=+ § PWO+

See if it runs then read on regardless of the result!

Editing Practice

Now make use of the function editor to add a couple of lingg¥a. You want the function to
print out the biggest and smallest of the numbers entered, together with somle sextab

*kkkkk

Hopefully all went well, and you ended up with a function looking something like this:

Learning APL with APLX 69

hVT[3
[1] Type some numbers
1 4 _ "PWO g" T
15_ ")lgqw"jcxg"gpvgtgf)"*SPWO+")pwodgt u)
] 6 _ "YVjg"dkiiguv ycu<")'*L1PWO+
[5] 'The smallest was <")"*I 1PWO+
[6] Total |s '(+/NUM)
]9_ ")yYCxgtcig"ku<)"**-1PWO+ES§PWO+

h
Saving a workspace

So far you have saved the functitry1in the workspace, but the workspace itself has not been
saved to disk. If you were to end your APL session nowaait york would be lost.

You may have doubts about saving the workspace contairvg But do it anyway as a dry run
for when you have something you really want to save.

First check what variables you have in your workspace:

JVARS
NUM TABLE X (you r list may be different.)

There's a system command for enquiring about functions which you can now use:

)FNS
TRY1

You're going to save the workspace, so you may as well first esas€, X and any other
variables you have in your workspace whichndreeeded byRY1:

)ERASE TABLE X

JERASE is another system command. It lets you erase one or several variables or functions froi
workspace in memory. You can check that the erasures took place by issuing yaetaéryou
want.

The next stefs to save your workspace. For GUI versions of APLX, the easiest way to save a
workspace to disk is to use the "Save)SAVE" command in the File menu. If the workspace ha
yet been saved, this will display a standard file selection dialog box askinghgre you want to
save it.

Learning APL with APLX 70

Save As L&J
Save i_n:| MyWorkspaces L] ﬁ‘ '
P
Name Date modified Type Size

BAA_talk.aws
Populate.aws
Poster.aws
RayTrace.aws
SQLDemo.aws
Utilities.aws

Save as type: l.—"-.PL".'u’oMspaces {~aws) Ll Cancel |

On subsequent occasions, the copy of the workspace on disk will be updated each time you s
Save again.

4

Now you know that workspace is saved on disc, you can clear the workspace in memory using
familiar command:

)CLEAR
CLEAR WS

You can check that it's worked by typing:

JFNS
The functionTRY1is no longer there.
You can get the workspace back imemory by selecting the "Open...)LOAD" item in the File
menu. When you choose this menu item, a second dialog box usually appears to warn you the
operation you are about to perform will overwrite your current active workspace (you can disal

this feature using the APLX Preferences dialog). This will only happen if you are not in a clear
workspace.

r APLX Warning &J

! This will overwrite all your current workspace contents
-

oK Cancel

You will then be asked which workspageu want to load, using the standard file selection dialoc
box.

Learning APL with APLX 71

The workspace you select will be read into memory. Checkrthatis back by issuing NS
command

User functions with arguments

If you comparerrRy1with the functions builin to APL, onepoint should strike yourRY1has no
arguments.

User functions can, in fact, have no arguments, one argument or two arguments.

Let's take the expression used'igv1to find the average of the numbers and define it as a one
argument function calledv. Theintention is that oncav exists, we should be able to use it like a
built-in APL function. We should, for example, be able to type:

AV12731
and get a result which is the average of the numbers on the right.

Here's the first line okv, known aghe function header statement. When defining the function
header, we have to indicate that the function will take an argument to its right:

hCX" Z
We've use to represent the rightand argument, that is, the datawill work on.
Here's the complete function:

hCX" Z
]3_"""*-1Z+ES8Z
We've assumed the numbers to be averaged are in the variablexcalhed's all there is tav, so
createthe function usingeDIT AV and try it out:

AV3814
4

AV 192 4534 120 2
948

It will work equally well if the righthand argument is a variable:

PWO" g"3"4"5"6"7
AV NUM
3

As you can see, any value to the righngf whether a dectly-quoted number, or a value in a
variable, is substituted for thewe used in the function definition.

User functions with two arguments work very similarly. In the function header, the arguments
represented by variable names on either side diitihetion name. For example, for a function
calledmpHintended to work on two arguments, namely distance and time, the header might be

Learning APL with APLX 72

hF" ORJ" V

The functionAv printed its result directly to the screen. If you want the function to return a resul
which can be used in further APL expressions, you need to charagefollows:

hRTgCX" Z
]3_"""Tg*-1Z+Es2Z

Here, the average is assigned tesultr, allowing you to do things like:

"3+AV3814
1

But you'll have to find out about this, and other types of-deéined functions, on your own. We
will return to the subject in a later chapter.

Functions within functions

There's no reasowhyAv should not be used iTRY1to work out the average of the numbers input
and held icf\um

Try editingTRYZ, then check that the new arrangement works.

Learning APL with APLX 73

Overview of the APL System

ISO specification

APLX incorporates the International Standardg@isation (ISO) draft specification of APL. It
conforms to that specification in all important respects. APLX also conforms closely to the
specification for APL2 as detailed in the IBM Manual 'APL2 Programming Language Referenc
(SH209227-3).

Whilst reaining compatibility with APL2, APLX Version 4 adds objewiented language
extensions, as well as a large number of other facilities, to the language.

The APLX Interpreter
Statements in a computer language have to be converted into the code usedimptiterdbefore

they can be executed. APL is an interpreted language which means this process is dgre line
line at the time of execution. The program which does the conversion is the APL interpreter.

The workspace

This is an area in the computer's randamoess memory where the programs and data on which
you're working reside. Other programs and data can be brought in from disc, but only items in
workspace are available for calculation or processing.

Data

You can type data in at the keyboard, or sibom a disc and load it into the workspace when
required. It can consist of numbers or characters or both. (A character is any letter, numeral ol
symbol on the keyboard.)

Data is held in structures called arrays. An array can be:

A single data item (cadld a scalar)
A list of items, i.e. a one dimensional array, (called a vector)

A table of data items i.e. a two dimensional array, (called a matrix)

= =4 =4 =

A higher dimensional array of data items
Each data item in an array can be either:

1 A number
M A character

1 Another array

Arrays containing both characters and numbers are aalbegdd and arrays which have elements

Learning APL with APLX 74

which are themselves arrays are cafledted arrays
There is also some special cases:

1 A collection of data items and/or functions (calledarerlay)

1 An object reference or class reference arising from the ebjesited language extensions
in APLX

You can use numbers and letters directly in APL, or you can give names to them and use the
names instead. An array to which you give a hame is a variable.

Note:

The earlier section avoided the use of the formal names for APL data and variables, but these
names will be used from now on.

Modes
There are three modes in APL.dalculator modeeach APL statement is executed as you enter i
In definition mode, the APL statements you enter are not executed immediately, but are stored

a usetdefined function or operator, the equivalent of a program. When you run-defsexd
function or operator, you're fiunction execution mode

Built -in functions and operatas

These are the operations that are built into the APL language. There are about fifty functions,
invoked by a single symbot & § St).

Functions are said to operateangumentsHere the add function has a left and a right argument:
129 + 34
Here thes function has one argument, a vector of three numbers:
§ 18672
Most of the functions can perform two different (though usually related) operations depending
whether they're used with one or two arguments. This effectively doublespimtoire of
operations available to you.
Five operators are also buiin to the language. You can use an operator with a function to mod
or extend the way the function works. An operator has one or operands(usually functions)
which are appliedo one or more arguments. The combination of an operator and its operand o
operands is calledderived function. Derived functions may in turn be used as operands to
operators.

System functions and variables

These are part of the APL system but strisfhgaking aren't part of the APL language. They

Learning APL with APLX 75

extend the facilities provided by the original APL language and their implementation tends to k
tailored to the computer on which the APL system is running.

For example, you can read and write data fronsfilsingT P T Ga&RITPY TKV G

You can use system variables and functions in your programs. Their names always start with
(Quad) to distinguish them from other function and variable names.

System commands

Again, these are part of the APL system but aren't paneoAPL language itself. Most of them
are concerned with managing the workspace. For example, you use system commands to cle
workspace or to save a copy of it on a disTLEAR)SAVE .

System commands are normally typed in at the keyboard and exdaetety, though it's
possible to include them in programs if you want to. System commands are always preceded
right facing parenthesis,.

User-defined functions and operators

These are functions or operators you write yourself while in definitiode. They consist of APL
statements and have a name. You can use this name in calculator mode, or you can include t
name in another function or operator to cause execution while that function or operator is runr

You can write a function or operattr supplement the repertoire supplied by the system. For
example, if you had to use the statistical meastaedard deviatiorirequently, you might write a
standard deviation function, and use it subsequently exactly like arbfulction.

You can alsavrite functions which are the equivalent of programs in other languages.

A function editor enables you to create functions or operators and subsequently make insertio
deletions and amendments. All versions of APLX will have a simple line editor aatiyusul

also have a fulkcreen editor (see implementation notes for details).

Files

Most programming languages use external files of data if there's too much data to embed in tt
program itself.

When you use APL, any data you want to process will usballin the workspace in memory.
Occasionally you may have to bring in more data from a workspace held on a disc. But the
workspace is so extremely convenient for holding both simple and more complicated data
structures, that only with bigger projects witlu find it necessary to set up files in the traditional
sense.

In multi-user environments, you may wish to use files to share data between users.

When you do need to work with files, APLX has the facilities for handling them.

Learning APL with APLX 76

Error handling
An error in astatement will usually cause an error message to be displayed. There are various
messages which identify the most common errors. If an error occurs during execution ef a use

defined function, information which will help locate the error is automatickdiglayed. There are
facilities for error trapping, together with various other testing and diagnostic aids.

Syntax

APL doesn't have many rules about the way expressions are written. You can use almost any
logical combination of variables and functionsdtter on the same line:

TGUWNV" g"Ln222.566E44-SV]

There are some common sense rules about spacing. These, and the few other syntax rules th
in APLX, are given in the APLX Language Manual.

Learning APL with APLX 77

The Workspace

Theworkspacas a fundamental coept in APL. It enables you to develop a project as a series of
small pieces of program logic. These are organizedfimctions operatorsandclassesas

described below. (For brevity, we sometimes use the term ‘function’ in this discussion to éfer tc
three of these). All of these @xist in the workspace and are instantly available for inspection,
amendment, and executier for use on another project.

Data of all shapes and sizes (storedanableg can inhabit the same workspace as the fansti
and is also instantly available, which greatly facilitates testing. And, of course, the entire collecti
can be saved on to disk by a single command or menu option.

Functions, operators, and classes can quickly be constructed, tested, strung itogaticars
combinations, and amended or discarded. Most importantly, it is very easy in APL to create tesi
(including large arrays), for trying out your functions as you develop them. Unlike many traditior
programming environments, you do not née@dompile and run an entire application just to test a
small change you have madgou can test and experiment with individual functions in your
workspace. This makes the workspace an ideal prototyping area for 'agile development’, and he
explain whyAPL is sometimes referred to as a 'tool of thought'.

Functions, Operators, Classes

In APL, the termfunctionis used for a basic program module. Functions can either barbtglthe
APL interpreter (for example, thefunction which does addition), oefined by the user as a series
of lines of APL code. Functions can take 0, 1 or 2 arguments. For example, when used for-addi
takes two arguments (a left argument and a right argument). The arguments to functions are al
data (APL arrays). Functisrusually act on whole arrays without the need for explicit program
loops.

An operatoris like a function in that it takes data arguments, but it also takes either one or two
operandswhich can themselves be functions. One of the commasdy builtin opeaators is Each
(7). This takes any function as an operand, and applies it to each element of the supplied data
arguments. Just as you can define your own functions as a series of lines of APL code, you car
define your own operators.

A classis a colletion of functions and possibly operators (together knowmethod} together

with data (placed in nameauopertiesof the class). A class acts as a template from which you can
createobjects(instances of classes), each of which can have its own cdpg ofass data, but

which shares the methods with all other instances of the class. A class can be used to encapsu
behavior of a specific part of your application.

Workspace size

The workspace size is stated on the screen when you start an AiRinsBepending on the
workspace size, it's either expressed in 'K' or 'M' , where:

1 One 'M' represents a Megabyte, approximately 1000 'K'
1 One 'K' represents a Kilobyte, approximately a thousand bytes, and

Learning APL with APLX 78

1 One byte is (again approximately) the amount of gotar memory used to store a single
character.

During the session you can find out how much space is free by using the system fuotidmch
stands for Workspace Available.

For users of GUI versions of APLX (Windows, Macintosh and Linux), the inittakapace size can
be changed using the APLX preferences dialog.

You can also change the workspace size for a session by ushagthe command with a
parameter specifying the workspace size you want. It must be an integer, and can be specified
bytes,or followed by K or KB for kilobytes, M or MB for megabytes, or G or GB for gigabytes. Tt
valid range is 50 KB to 2 GB (for 3ait versions of APLX), or up to a theoretical maximum of
8580934592 GB for APLX64. For example:

)CLEAR 50MB

The initial ske of the workspace also depends on how much random access memory (RAM) yol
have in your system and the amount of disk space reserved for virtual memory. Some of this is
by the operating system and other tasks, so you may not get a workspace a@s thhegene you
requested.

Do not set the workspace size to a value larger than the amount of RAM installed in your syster
performance will be affected.

Managing the workspace

There aresystem commandasr enquiring about the workspace and doing opemattbat affect it
internally. The most useful of these are mentioned below under the heading 'Internal workspace
commands'. (Note that, to distinguish them from names in your program, the names of system
commands start with a right parenthesis, X2geAR.)

There are also system commands for copying the current workspace to disc, reloading it into
memory and doing other similar operations. These are mentioned below under the heading 'Ext
workspace commands'.

The system variables and system functidee aupply some useful facilities in this area, and are
discussed in this chapter.

Internal workspace commands

At the start of a session, you're given an empty workspace which has theurmsxrans At any

time you can return to this state by issuing tysesm commaniCLEAR. Any variables or functions
you have set up in the workspace are wiped out by this command, so if you want to keep them,
should first save the workspace on to a disc.

You can get a list of the variable names in the workspace hy tis#)VARS command. The
commandFNS produces the equivalent list of functions and the comnpapsd gives the list of
userdefined operators. The commaya ASSES lists the classes you have defined.

Learning APL with APLX 79

If you don't want to clear the entire workspace, yau@et rid of individual objects by using the
commandERASE followed by the name(s) of the object(s) you want to remove.

Loading and saving workspaces using the File menu
For GUI versions of APLX, the easiest way to save a workspace to disk is to uSavee SAVE"

command in the File menu. If the workspace has not yet been saved, this will display a standar«
selection dialog box asking you where you want to save it.

I Save As &J
Save 1_n:| MyWorkspaces _'_J ‘ ﬁ‘ Ed~
Name Date medified Type Size

BAA talk.aws

| Populate.aws
Poster.aws

| RayTrace.aws
SQLDemo.aws
Utilities.aws

Save as type: l."-‘.PL".'v’odcspaces [".aws) LJ Cancel |

On subsequent occasions, the copy of the workspace on disk will be updated each time you sel
Save again.

To load a new workspace, select the "Open...)LOAD" item in the File menu. When you choose
menu item, a secondadog box usually appears to warn you that the operation you are about to
perform will overwrite your current active workspace (you can disable this feature using the APL
Preferences dialog). This will only happen if you are not in a clear workspace.

APLX Warning [&J

|
|
|
‘ ! . This will overwrite all your current workspace contents

..

OK Cancel

L

You will then be asked which workspace you want to load, using the standard file selection dial
box.

The "Save As..." menu item allows youdave your current workspace under a new name. You wi
be asked to confirm if you try to overwrite an existing workspace.

Learning APL with APLX 80

External workspace commands
Another way to save a workspace is by typing)tB&/Esystem command, e.g.

)SAVE myWorkspace
2008 - 08- 06 12.10.54

APL responds by saving the workspace to disk under the specified file name, and displays the ¢
and time at which the save operation happened, known as the timestamp.

The) LoADcommand followed by the name of a workspace brings the nanrdpace back into
memory. The workspace already in memory is overwritten.

If you want to bring specific functions or variables into memory, but don't want to overwrite the
workspace already there, you can use) t@Pycommand. (There's also a system florGtT Q X
which allows you to group functions and variables together as an ‘overlay' which can be stored
retrieved as a single entity.)

You can get rid of a workspace on a disc by using trOPcommand.
To find out the names of the workspaces alreadgdton a disc, use the commamas .

You may be wonderingzhereon the disk the workspaces are stored 8A&E operation? The
answer is that APL makes use of something called/hent table. This is a ten row table, in
which each row contains the nameadblder on your computer.

For example, if the first row of the mount table on a Windows version of APLX contains
'‘C\UserdFredDocuments’, then the commayshVE myWorkspace Will create the file
'‘C:\UserdFredDocumentimyWorkspace.aws', and the command would list all the APL
workspaces in that folder.

A collection of workspaces in a folder is called a library. Each row of the mount table is number:
from 0 to 9, so you can select other rows by specifying a library number, e.g.

)SAVE 3 myWorks pace
2008 - 08- 06 12.22.07

This will save the workspace in the folder named by the fourth row of the mount table. The
workspace ID includes the library number:

YWSID
3 myWorkspace

If a row of the mount table is blank (which is normally the case wharfisgi install APLX), then
the user's home folder will be used.

The initial mount table when APLX starts up is set by your preferences. You can also change th
mount table at any time using the Preferences dialog, or you can use the APL combmandSe
the APLX Language Manual for details.

If you specify a full path name when loading or saving a file, the mount table is bypassed and tr

Learning APL with APLX 81

file name is used as specified. For example:

)SAVE 'C: \ My Workspaces \ Utilities \ searchWS.aws'
2008- 08-06 12.32.0 6

YWSID
C:\ My Workspaces \ Utilities \ searchWS.aws

)LIB'C: \ My Workspaces \ Utilities'
searchWs

In addition to the libraries 09, Library 10 is defined to refer to the folder where the APLX
interpreter is located. It contains a numbedemo workspaceswhich ship with the APL
interpreter, e.g.

)LIB 10
CONVERTQWI DISPLAY HELPDOTNET HELPDRAW HELPIMAGE HELPJAVA
HELPOBJECTS HELPQWI HELPSYSCLASS HELPTRANSFORM PACKAGEDEMO SAMPLEEXCEL
SAMPLESCHART SAMPLESQWI SAMPLESSYSCLASS TOOLKIT

)LOAD 10 SAMPLESCHART
SAVED 2007 - 12-12 10.47.50
APLX SAMPLESCHART Workspace Version 4.0 November 2007
This workspace contains functions showing various charts
programmed using the Chart and Series objects.

We recommend that you explore these demorkspaces as you will find a lot of useful material.
System variables

What goes on in the workspace is conditioned to some extent by the current settings of system
variables.

You can find out the value of a system variable by typing its name. For exampke the setting of
T R,Rhe variable which determines how many digits are displayed in numeric output, you would

type:

TRR
10

You can change the value of most system variables by using the symbBok example, to change
T R from its normal value of 10, to a value@&fyou would type:

TRR" g" 8

Other system variables you may occasionally want to enquire about or (in some cases) alter are
full list is given in the APLX Language Manual):
TWA Workspace available: the number of bytes available for use indHespace.

TPP Print precision: the number of digits digped in numeric output. The noaisetting is
10.

1 TPW Print width: the number of characters to the line. On most systems, the normal settit

Learning APL with APLX 82

1 TLX Latent Expression: the expression or edeiined function in this variable is executed
when the workspace is loaded. You might, for example, write a function which set things
for you when you started a session and assign its name.ténless you assign a value to
TLX, it's empty.

System finctions

We've been discussing system variables. System functions can also affect your working
environment. The system functigno Q WHor example, is used to change the mount table as
described above.

Other system functions duplicate tasks performedybiesn commands. For example, the system
functionT P Which stands foname list can be used to produce a list of variables, functions,
operators or classes, and the system fungtierean be used texpungeindividual APL objects.
Similar jobs are doneylthe system commangARS)FNS)CLASSES)ERASE

The difference between system functions and system commands is that system functions are
designed for use in usdefined functions, and behave like other functions in that they return resu
which can be sed in APL statements. System commands, on the other hand, are primarily desic
for direct execution and can only be included in a-gsfined function if quoted as the text
argument to the functioim (execute- a function which causes the expression quoted to be execute

System functions and variables are a mixed bag and have other purposes besides control of the
workspace. They will be mentioned again under various other headings.

When you finishreading about Data in the next section, you should take a quick look at the syste
functions and variables in the APLX Language Manual. Some of them have somewhat specialis
applications, but many of them help with everyday tasks and are well worth knatdnuit.

Learning APL with APLX 83

Data

APL owes a considerable amount of its power and conciseness to the way it handles data. Me
lines of code in noi\PL programs are devoted to 'dimensioning’ the data the program will use i
to setting up loops and counts to control datacture. With APL you can create variables
dynamically as you need them and the structure you give a data item when you create it deter
how it will be treated when it's processed.

Data is an important subject in APL. The rest of this chapterusvag of its main characteristics.

Variables

As in most programming languages, data can be directly quoted in a statement, for example:
234.98 x 3409+12.4

or it can be 'assigned' to a name by the symbol .., in which case it's called a variable:
XCT"§"3:508

We concentrate on variables in this chapter, but the comments on data type, size and shape ¢
equally applicable to directly quoted numbers and characters.

Names

Variables, usedefined functions and useefined operators have names which @@mposed of
letters and digits. The full rules are in the APLX Language Manual, but here are some exampl

PRICE

A

albert

A999
KVGOGS3
THIS_ONE
That One

APL uses uppecase and lowecase characters. APL regards the symippkelta) as a character
that can be used in names, and also allaw®elta-underbar). In addition the (underline)

character and the (high-minus) character may be used, but not as the first character in a name
Names may be up to 30 characters long and must start with an alpichbeticter or delta or
deltaunderbar.

Note:
On some notGUI implementations of APLX, the lowarase characters may be replaced by

underlined uppecase characters. Please check in the Supplement which covers your
implementation of APLX.

Learning APL with APLX 84

Types of data

Datacan be numbers, characters or a mixture of the two. Characters are enclosed in single qu
and include any letter, number or symbol you can type on the keyboard, plus othgrntiog
characters. The space counts as a character:

7 thisitem is 7 charaers long: '1 ABC."'
1 thisis a single number: 84724.869
9 this is a number and a character: 12.3 'E'

Numeric digits, if enclosed in quotes, have no numeric significance andeanvolved in
arithmetic.

T this is a numeric value: 2876

1 this variable is composed of 3 characters:749'

Size, shape and depth

An array in APLX can be anything from a single letter or number to a-#ixée dinensional
array. Elements within the item may themselves be arrays. Here are some examples of data i

1 asingle number or a single character. formally known Ssadar

e.g.
294

or
A

1 alist of numbers or characters, formally known &seator

e.g.
2380123
or
'ABC'
or
28 3'A''BC'

1 atable of numbers or characters, formally known lslaaix

e.g.
745 289

16 15 10 21

8 01399

8319 427

Learning APL with APLX 85

or
WILSO 393
ADAMS 7183
CAIRN 87
SAMSO 8467

As you'll have gathered, data is considered to have dimensions.

A single number or character scalar (like a point) has no dimensions. A vector has one dimen:
length. A matrix has two dimensions, height and length. The \moaly’ is a general term
applicable to a data structure of any dimension. Arrays of up tothisee dimensions are possible
in APLX.

An array which contains other arrays is calles$ted An array which does not is callsanple

This is how APL displays threedimensional array:

233011 8
3022 23 20
31927 9

142315 8
911 515
2728 228

1616 10 30
15 8 329
31612 9

Each of the three blocks of numbers has two dimensions represented by the rows and columr
three blocks form ttee planes which constitute another dimension, depth. You will notice that ti
array is displayed on the screen in such a way that you can identify the different dimensions. [
spaces are left between the rows of each plane. One blank line is left beagbgriane. A four
dimensional array would be displayed with two blank lines between each set of planes.

More complicated arrays, where some of the elements are themselves arrays, will also have
'depth’ which measures the degree of complexity of thetatel Thus a simple scalar has a depth
of 0 and a structure whose elements are purely simple scalars (such as the array shown abov
a depth of 1. If any element of an array is itself an array, the array has a depth of 2. The depth
go on increasig with the complexity of the structure. An array which has an element which in ti
has a norscalar element has a depth of 3, and so on.

Setting up data structures
It isn't always necessary to explicitly define the size or shape of data:
Z" §g" 454341230
In the case above, X is a sgkement vector, by virtue of the fact that six elements are assigned t

it. Vectors which contain both characters and numbers may be set up by enclosing the charac
' (quote) characters. Here is anotheraliement vector, this time containing four numbers and tw:

Learning APL with APLX 86

characters.
Z"g"3"4")C)")D)"5"6

Explicit instructions would be necessary if we wanted the six elements to be rearranged as ro\
and columns. The twargument form of the functiof(Rho) is used to give such instructions:

4"5"8§" 45" ;,"366"34"7"2
239 144
125 0

The left argument specifies the number of rows (in this case 2) and the number of columns (in
case 3). The right argument defines the data to be arranged in rows and columns.

Notice that the dimensions are always specified in this order, thatakimns are the last
dimension rows precede columns and, if there are only two dimensions, are the first dimensio
In the case of data with more than two dimensions, the highest dimension comes first. So in tf
threedimensional example used earitre plane dimension is the first dimension followed by the
rows, then the columns. (The ordering of dimensions is an important point and will be discusst
again later in this chapter.)

To return to the& function, if the data in the right argument isuffcient to fill the matrix as
specified, APL simply goes back to the beginning of the data and uses it again. If too much de
supplied, APL uses it in the order given and ignores superfluous data.
Arrays of three or more dimensions are set up iméasi way to matrices. The following
statement specifies that the data in a variable callads to be arranged in three planes, each
consisting of three rows and four columns:

334 § PWOU

The result would look like the thre#tmensional array shown in the previous section.

Thes function can also be used to set up vectors. This statement specifies that themisnder
be used to form a siglement vector:

8§ ;
999999

Arrays of arrays (or 'nested arrays') may be set up by a combination of these rules. Here we s
another vector, some of whose elements are themselves vectors or matrices. Note the use of
parentheses to indicate those elements which are actually arrays.

VARg"*4"58§; +"*3"4"5+")C)")CDEF)"::"3803

The variablevARis another sibelement vector, but its first element is a 2 by 3 matrix, the seconc
threeelement vector, the third a single character, and so on.

Learning APL with APLX 87

Data structure versus data value

A data structure lsacertain attributes, regardless of the specific data it contains. For example, ¢
vector has one dimension while a single number has no dimensions.

You can take advantage of this fact.

If you intend to use a single number for certain purposes, it mayrvement to set it up as a ene
element vector. In this next examplés defined as a orelement vector containing the valee

Xg"3"8§"44
For contrast, here2 is assigned to as a single number:
["g" 44

The difference betweexandy will be seen if we apply the orergument form of to each of
them. (This form ot tells you the size of each dimension of a data item.)

§Z
1

S
empty response

Both variables contain the valae. But X is a vector and has the dimension of length, s@ the
enquiry produces the answemdicating thatx is oneelement long. On the other hands a
single number with no dimensionkhe answet would be inappropriate since it would suggest
that it had the dimension of length. So an empty answer is displayed.

The result of thé enquiry can itself be used as data in an APL statement. It might, for example
the basis of a decision ait what to do next. For this reason, it may suit you to define a value
sometimes as a oredement vector and sometimes as a single number.

Similarly, it may be convenient in certain situations to define a vector as@wn®atrix. Herez
is defined as anatrix of one row and five columns:

Zg"3"7"8§"34"7"5:"5"8
It looks like a vector when displayed:

z
1253836

But an enquiry about its size returns information about both its dimensions:

S\
15

Learning APL with APLX 88

Empty data structures
Variables which have a structure but no content may alsodfel ur example as predefined
storage areas to which elements can be added. An 'empty vector' is a variable which has beel
defined as a vector, but which has no elements. Similarly, an 'empty matrix' has the appropria
structure, but no elements.
Thereare many ways of creating empty data structures. To take one example, the f&i(ictian
produces a vector of the number of numbers in right hand argumehtgBoduces the vector of
no numbers, that is, a vector in which there are no elements:

z"g" S2
X contains no elements, as can be demonstrated by displaying its condémtsy(is displayed):

X

But it is a vector (albeit an empty one) and does have the dimension of length. If-¢rgoment
form of § is used to enquire about the size of its dimensions, the anssvezturned:

§Z
0

This indicates that its fgth is zero elements. Contrast this with the answer returned if yougappl
to a single number (which has no dimensions):

§"67
An empty answer is displayed since the item has no dimensions.

An empty matrix can be created in the same way as an emgtyr. In the following example, an
empty matrix is created consisting of 3 rows and no columns:

VCD" §" 5" 2882
Dimension ordering
When a function is applied to an item with more than one dimension, you need to know which
dimension the function willgerate on. If you apply an add operation to a matrix, for example, w
it produce the sums of the rows or the sums of the columns?

COL1 COL2 COL3 COL4

ROW 1 1 + 2 + 3 + 4 =10
ROW 2 5 + 6 + 7 + 8 =26
ROW 3 9 + 10 + 11 + 12 = 42

The rule is that unless you specify otherwise, operations take place on the lastiaiime

Learning APL with APLX 89

The 'last' dimension is the one specified last in the size statement:
VCDNG" §" 5" 68FCVC
The4 above is the last of the two dimensions specified. It represents the number of columns.

An add operation 'on' theblumnsadds each element in coluririo thecorrespondingelement
in columns 2, 3 and 4.

COL1 COL2 COL3 cCoOoL4

7 n n n " t] n n n n 8 " " " n I:\] n n n n 9 " n n n I:\] n n n n : n n " " ? n n 4 8
;" h*t"g32""""h""""33""""h"""34""""?2""64

So, as can be seen, an agermation 'on’' theolumnsproduces the sum of the elements in each
row.

Similarly, if you were to apply the add operation tofint dimension of the matrix, that is to the
rows, it would add all the items in row 1 to the corresponding items in rows 3:an

ROW1 | 1 2 3 4

| Fpvom oo e e g g
ROW2 | 5 6 7 8
N R R N B LN
ROW3 | 9 10 11 12
2 S~ S S BB

15 18 21 24
So an add operain applied to the rows produces the sum of each column.
As already described, by default operations are applied to the last dimension (the columns). If
want to specify a different dimension, you can do so by usingxis€[]) operator which is
discused in the chapter on operators in this section.

Indexing

To select elements from a vector or matrix a technique called indexing is used. For example, i
have a terelement vector like this:

X§g"3"67"8"5"; "55"8"2"3" 44

the following expression selects the fourth element and adds it to the tenth element:
X[4] + X[10]

Note that square brackets are used to enclose the index.

To index a matrix, two numbers are necessary, the row number acaluhen number:

Learning APL with APLX 20

TABLE
12 34 27
92814
66 031
TABLE[3;2]
0
In the last example the index selected the element in row 3, column 2. Note the semicolon use
a separator between the rows and columns. Note also the order in which dimersgpecdied.
This corresponds to the order used inglstatement.
Items can be selected from data with three or more dimensions in exactly the same way:
DATA[2;1;4]
selects the item in plane 2, row 1, column 4 of a talieeensional data structure.
To select an entire row from the matrix above you daype:
TABLE[1;12 3]
That is, you could specify all three columns in row 1. A shorter way of specifying this is:
TABLE[1;]
Similarly, to select a column, say column 2, you would enter:
TABLE[;2]
The expression you put in square brackleissn't have to be a direct reference to the item you
want to select. It can be a variable name which contains the number which identifies the item.

can be an expression which when evaluated yields the number of the item:

(3 8 4)[1+2]
4

The alove statement selects item 3. The item selected by the following statement depends on
value ofP when the statement is obeyedpidontains2, say, then the letteris selected:

'ABCDE![P]
B

You can also use indexing to-agrange elements ofvector or matrix:

'ABCDE'4 5 1 4]
DEAD

Finally note that the data or variables used within an indexing expression may be of a higher
dimension than the object being indexed. Thus:

Learning APL with APLX 91

'‘ABCDE'[22 §6" 7" 3" 6

DE
AD

For more details on this point check the entryffoin the APLX Language Manual. In addition to
the[] (bracket) symbols, thie(squad) function can be used for indexing. The left argument to
indicates the element or elements to bexede

41") CDEF)

selects the second element fra®CD' .

Learning APL with APLX 93

Built -in Functions

APL provides 50 or so buiih functions that do all the conventional operations and some rather
sophisticated ones as well. It also provides 5 operators that modify &mdl ¢éixe way the

functions work. These functions and operators can be used together very flexibly. Consequen
it's possible to do a great deal in APL without ever leaving calculator mode: one APL line can
the equivalent of an entire subroutine in deotlanguage.

Arguments

Most APL functions are capable of doing two different but related tasks. The number of
‘arguments' the function is given to work on determines which task it will perform. Here's the
function used first with one argument, then with two:

L340847
13

4" L
8

In the first (monadic or orargument) form, the function rounded up the number on its right to t
next whole number. In the second (dyadic or-avgument) form it sekted the bigger of the two
numbers.

Here's another example:

+12345
10.50.33333333330.250.2
100+12345
100 50 33.33333333 25 20

In the first example the functionwas used with one argument. In this form it yields the reciproc:
of the number, or numbers, on the right (i.e. the result of dividing each number). In the second

example it was used with two arguments. In this form it does ordinary division. The left arguma
100, was divided in turn by each number in the right argntn

Execution order

A line of APL may consist of several functions, and arguments. There are therefore two points
must bear in mind:

1 Expressions are evaluated from right to left.

1 The results of one function become the argument of the next function.
This simple example illustrates both of these points:

50x2-1
50

The expression is evaluated from right to lefeso is evaluated first, giving, ands0x1 is

Learning APL with APLX 94

evaluated second, giving a final resulsof The result produced by the subtract funcbhecame
the righthand argument of the multiply function.

Numbers or text

Some functions work on numbers only. The arithmetic functions are in this category. You'll gei
message saying you've madeG@VAIN ERRORf you try to use any of the arithmetic op#srs on
text data.

Some functions work on either. Thdunction, for example, can be used (with one argument) to
find how many characters are in a text item, or how many numbers are in a numeric item:. Its t
argument form (which you've seen used to shape data into a specified number of rows and
columns) ale works on either numbers or characters.

The logical functions (logical, T and the rest of that family) work on a subset of the number
domain. They recognise two states only, true or false as represented by the ruamolerdf any
other numbers or @nacters are submitted to them, a domain error results.

Shape and size of data

Some functions can be used only on data of a certain shape. Matrix divittg €xample,
demands data structured in an appropriate way. Other functions work on data cdEnpiskize.
Arithmetic, for example, can be done on single numbers, vectors of numbers, matrices of num
or on numeric arrays of higher rank (up to sittyee dimensions).

Any two data items involved in arithmetic and certain other operations nowgtvier conform in
size and shape, that is, it must be possible for APL to match each element inlthadeft
argument with each equivalent element in the flgntd argument. The arguments in this example
don't match and an error results:

2951602 7+311
LENGTH ERROR
295160 27+311

AN

The reasonable exception to this rule is the case where one argument consists of a single elel
and the other argument consists of a vector, matrix or multidimensional array:

39 591x2
78 10 182

APL simply applies the single element to each element in the other argument. There's no
ambiguity about which element matches which, and no error results.

Groups of functions
In the rest of this chapter we take groups of functions that do related thingseansk briefly
what each group does. A few examples are given, partly to illustrate particular functions and p

to 'acclimatise’ you to APL.

To find out more about any function, see the APLX Language Manual which provides a definit

Learning APL with APLX 95

and examples fogach function.

The groupings chosen are:

=4 =4 =4 =4 =4 4 4 =

Arithmetic functions

Algebraic functions

Comparative functions

Logical functions

Manipulative functions

Sorting and coding functions
Miscellaneous functions and other symbols

System functions

Arithmetic functions

All the usual arithmetic operations are provided. What makes APL arithmetic interesting is not
functions themselves, but the fact that they can be applied to simple or complicated data.

A multiplication, for example can take place between two numBdiesnatively every number in
one matrix can be multiplied by the corresponding number in a second matrix producing a thir
matrix of the products. (The scope of operations is extended further by the APL operators, but
are dealt with in the next chagpt)

Remember that each function is capable of two different operations, depending on whether it's
used with one or two arguments. The different operations are identified in the table below.

Function One-argument form Two-argument form

+

X

L
"
I

Identity (i.e. value) Add

Negation Subtract
Sign of Multiply
Reciprocal Divide

Round up to integer Bigger of two numbers
Round down to integer Smaller of two numbers

Make positive Residue (remainder) of divisi

(Note: the- minus sign represents the negate and subtract functionssitpe is used to identify
negative numers.)

Learning APL with APLX 96

Examples of arithmetic functions

1. A vector of numbers is multiplied by a single number.

26319x05
131595

2. A vector of numbers is divided by a single number:

37811+3
1 2.333333333 2.666666667 3.666666667

3. A vector omumbers is divided by a single number. The results are rounded up to the next w
number and are then displayed:

L"5"9":"33"ES5
1334

4. The same operation as the last example, except.th& subtracted from each number before
it's rounded up in order to give 'true' rounding:

L"1207"-"5"9":"33"ES5
1234

5. Two vectors containing some negative values dded.x is applied to the resulting vector to
establish the sign of each number. The final result is a vector in which each positive number is
represented by B each negative number by aand each zero bya

x12 13 5+2 6 45
1110

6. The remainder of dividing 17 into 23 is displayed:

1723
6

7. The remainders of two division operations are compared and the smaller of the two is disple
as final result:

(317) " 6" ~"33

Algebraic functions

These are functions for doing more advanced arithmeticcee(beg) function, for example, gives
you either natural logarithms or logs to a specified base, wii@rcle) gives you access to sine,
cosine, tangent and sevether trigonometric functions. Factorials and combinations can be
obtained with (Factorial) and if you have a simultaneous equation to solve, or want to try a litt
matrix algebraf. (Domino) is your function.

Some functions have more everyday useg.Sltiota) function will produce a series of numbers

Learning APL with APLX 97

from 1 to the number you give it.

The?(Query, Roll or Deal) function, for its part, 'rolls' you a single random number, or ‘deals’ yc
a hand of such numbers.

Function One-argument form Two-argument form

S Index generator

? Random number Random deal

* ‘e’ to power Any number to powe
oe Log to base ‘e’ Log to any base

G pi times Sine, cosine, etc

! 1x2x3x%.. Combinations

2 Matrix inversion Matrix division

Examples of algebraic functions

1. The numbers 1 to 10 are put in a variable called

z"g" S$32
12345678910

2. 3 random numbers between 1 and 10, with no repetitions.

3?10
283

3. The logarithm to the base 2 of 2 4 8.

4" =" 4" 6"
123

4. The number of combinatisrof 2 items which can be made from a population of 4 items.

214
6

Comparative functions

Comparative functions naturally take two arguments. The arguments are compared and if the
condition specified by the function ('less than', 'equal to' or whgtés true, the result is
Otherwise the result &

Comparative functions are useful for finding items of data that meet certain conditions (e.g.
employees whose sex equals, or whose age is less tha®). They are also useful for making
decisionsabout sequence in uséefined functions. For example, if a variable is greater than a
certain value, you may want to branch to a particular point in the function.

Learning APL with APLX

Function Two-argument form only
< Less than

ij Less than or equal

= Equal

J Greaterthan or equal
> Greater than

i Not equal

| Match

T Contained in

S Searches for match
s Find

Examples of comparative functions

1. Are two given numbers equal? (1 = yes 0 = no)
10=5
0

12=12
1

2. Are the corresponding characters in strings equal?

'ABC' = 'CBA'
010

3. Is the first number greater than the second?

10>5
1

4. Is each number in the first vector less than the matching number in the second vector?

396<999
101

5. Is the number on the left in the vacon the right?

12 1" 8" 34" 46

98

Learning APL with APLX 99

6. Is the character on the left in the string on the right?

yD)""T"")CDEFG)
1

7. Which numbers in a matrix are negative? (The contertagfe are shown first so that you can
see what's going on.)

TABLE
1254 1
739023
16 9 2

TABLE <0
000
100
010

8. Find the number on the right in the vector on the left and show its position.

3
9. Are two matrices exact matches?

*4" 48S6+"1""*4" 4556+
1

10. Find the pattencAT within the charactersHATCAT

)y ECV")"s")VJCVECV")
0000100

Logical functions

These are also comparative functions, but they work with data composed exclusisenadbs.
Since the comparative functions you've just looked at produce results composed exclugisely o
andos, you'll appreciate that a logical test is often applied to the result of a comparison.

For example, if you've used the comparative functiggreater than) to produce a vector of
employees over the age of 25, you'll have a vector in which sucloygeeglare represented by.a

If you've also applied the (equals) function to your employee data to find cases where sex equ
'M' , you'll have a separate vector in whichrepresent males. Now if you were to apply the
logical~ (and) function to theséwo vectors, it would compare the vectors, and produceach
time both vectors contained ain the equivalent position. The result would be yet another vectol
in which employees who were over 26d male were represented by a

Logical comparisons aralso used in uselefined functions to control branching.

Learning APL with APLX 100

Function One-argument form Two-argument form
~ Makes 1 into 0 and O into 1
T 1 if either/both 1 (Or)

A 1 if both 1 (And)
S 1 if both O (Nor)
$ 1 if either/both O (Nanc

Examples of logical comparison functions

1.~ used to reverse 1's and 0's:

~1110001
0001110

2. The same data submitted to various lagianctions:

3" "2
1

170
0

3" 8" 2
0

3" §"2
1

3. Each element in one vector is compargdi(th the matching element in another.

1017001
001

4. Two expressions are evaluated. If both are true (i.e. both return at/alutnen the whole
statement is true (i.e. returns a value of 1):

(5>4)71<3

Manipulative functions

These functions do a variety of useful operations on data.

The one argument form é6f(Rho) enables you to find out the size of data. $ntwwo argument

form it enables you to specify how data is to be shaped or arranged. (There were many exam|

this in the earlier chapter on data.)

1 (Depth) tells you about the depth (or degree of nesting) of an array.

Learning APL with APLX 101

, Comma, in its oneargument formcan take a mukilimensional object like a matrix, and
unravel it into a singkglimensional vector. In its twargument form, it can catenate separate date
items to form single larger items, so that two matrices, for example can be amalgamated-The
argument form of can also join (or laminate) data items in such a way as to give the data an e
dimension. Two laminated vectors, for example, would form a matrix.

T (Enlist) turns any array, even nested arrays, into a simple vector.
N (Rotate) andn (Transposg can be used to reverse the ordering of data within arrays.

TherandH (Drop andTake) functions are useful for selecting data. You might, for example,
wish to examine the first few members of a list with

~ (Without) can be used to remove items from a vector.

j (Encloseé will turn arrays into nested scalars, useful for making complicated arrays, gvhilst
(Disclosg will reverse the process or select elersdrdm nested arrays.

Function One-argument form Two-argument form

8 Returns dimensions Creates vector or array

| Depth of an array

Converts matrix or array to vectcCatenates (joins) data items
| Makes into vector

~ Removes items

N Rewerses elements Rotates elements

=

Transposes columns and rows Transposes according to instructi

H Takes first element of an array Takes from an array

H Drops from an array

i Encloses an array Creates an array of vectors
K Discloses an array Picksfrom an array

Examples of manipulative functions

1. An enquiry about the size of a character string:

§")CTNKPI VQP"COL. "44"DQPF"TF" URG" 54G)
33

2. A threerow four-column matrix is formed from the numbers 1 to 12 and is assigned to
'DOZEN' :

Learning APL with APLX

w»
w

FQ\GP" g" 5" 6" "34

DOZEN
2
6
10

© o
BN W

4
8
112

3. The matrixpOzEN' is ravelled into a vector:

,DOZEN
1234567891011 12

102

4. The matrixDOZEN' is first converted to vector form and is then catenated (joined) with the

vectori3 14 15):

(,DOZEN), 13 14 15
DOZEN
1234567891011121314 15

5. The matrixbOzEN' is reformed from the original data in reverse order:

FQ\GP" §"5" 68 N. FQ\ GP
1211109
8765
4321

6. Even numbers are removed from atoe.

123456~246
135

7. First 3 characters are selected from a vector:

5"H) CYHWNN])
AWF

8. An array is made into a nested scalar.

i::;,;,"56
999 34

§7;;,;,"56
empty

The two element numeric vector is 'enclosed' into a siregéed scalar, with an empty shape.

Sorting and coding functions

The sorting functions enable you to arrange data in ascending or descending order. You can ¢
use the computer's collating sequence to determine sorting order, or you can specify your owt

collation sequence.

When looking at the exampleswando (Grade up andGrade down), bear in mind that they

don't produce a sorted version of the data to which they're applied. Instead they produce what
effectively an index which when applied to the original data will sort it into the required order.

Learning APL with APLX 103

The coding functions andL (encodeanddecodg enable you to take data represented in one
system and convert it to the equivalent value in another system. For example, you could conv
numbers from hexadecimal (base 16) to decimal.

Function One-argument form Two-argument form
n Ascending sorted indice Sort with specified collating sequer
0 Descending sorted indic Sort with specified collating sequer

i Convert to a new number system

L Convert back to units

Examples of sorting and codifignctions

1. To put a vector of numbers into ascending order:

NKUV" g" 422" 76"35";"77"322"36": 4
NNKUYV

43725861
LIST[43725861)

9 13 14 54 55 82 100 200

2. To sort the same vector as in example 1 with less typing:

NKUV] ®TNK
9 13 14 54 55 82 100 200

3. To find how certain symbols rank in the collating order (i.e. the order in which APL holds
characters internally):

U[ODU" §:'/) $
QTEGT" §" DU[ODU
SYMBS[ORDER]

WA

4. To convert the hex number 21 todescimal equivalent:

38"38"L"4"3
33

Miscellaneous functions and other symbols

Many of these involve the input of data from the keyboard, or affect the way data is displayed
printed.

Function
T Accept numbers from keyboard or display re

E Accept characters from keyboard or display

Learning APL with APLX 104

Statement separator

o) Format data for display

3 Use picture to format data for display
6 Comment

n Execute an APL expression

I Index

i Empty numeric vector (Zilde)

Examples of miscellaneous symbols

1. To carry out more than one APL statement on a single line, then to format the data (turn a
number into its character equivalent) and make up a single character vector using the catenat
function:

) VI RG" C" PWODGT) ""| "PWO"¢g" T
) [QW" V[RGF) . " OPWO
2. To display each number in a vector in-at@aracter field with two decimal places:

8" 4" 0" 820555555"3;"4"7409:
60.33 19.00 2.00 52.78

3. To display each number in a vector preceded by a dollar sign and with up to three leading z
suppressed:

) &&\ .V V)" Ss"65:;,;, "88" 4
$3,899 $66 $2

4. To index the third item from a vector:

3
(The miscellaneous symbols are treated in detail in the APLX Language Manual)
System functions

Another very powerful type of builth function in he System Function. This is a large topic which
is introduced in the next chapter.

Learning APL with APLX 105

System functions (Quad functions)

The builtin System functions extend the power of APLX by providing dasyse crosglatform
tools for achieving many common and m@omplex tasks.

In general, the same system functions are supported by all versions of APLX, so that code wri
using them will run under Windows, Macintosh and Linux. However you should note that APL
interpreters from other vendors may implement gedéht set of functions which is often much
less rich.

There are too many system functions to cover in detail here, but here are just a few...
System functions for manipulating data

There are a number of system functions that manipulate data, including:

Function
TBOX Vector to matrix and vice ver
TDBR Delimited blank removal

TSS String search and replace

For reshaping vectors as matrices (and visa versa) a system funaiqQig available:

TDQZ")EQI U" YJGGNU" URTKPI U)
COGS
WHEELS
SPRINGS

and for deldahg spaces from character data, there's another system variat€Pelimited
Blank Removal):

TEDT") WIDE OPEN SPACES'
WIDE OPEN SPACES

Another function iy U (String Search and Replace). In this example, all occurrences of th
characterg\REIn a text variable are replaced BRE NOT.

OCPKHGUVQ" §") CNN" CPKOCNU" CTG" GSWCN)
TUU" * OCPKHGUVQ=")CTG) =")CTG"PQV) +
ALL ANIMALS ARE NOT EQUAL.
T U is extremely powerful. It can also be used to perfoggular expressiolsearches.

There are further details and examples of these three system functions and others in the APL.
Language Manual.

Learning APL with APLX

System functions for reading and writing files

APLX includes a large number of functions for reading and writing files.

Function

TNCREATE Create native file

TNTIE
TNREAD
TNWRITE
TNUNTIE
TNERASE
TNERROR
TNLOCK
TNNAMES

TNNUMS

Open native file

Read data from native file
Write data to native file
Close native file

Erase native file

Get last native file error
Lock/Unlock native file

List names ofieéd native files

List native file tie numbers

TNRENAME Rename native file

TNREPLACIReplace data in native file

TNRESIZE
TNSIZE
TNTYPE
TEXPORT

TIMPORT

Resize native file

Get size of native file

Set native file type (MacOS)

Export APL array to file gpecified forma

Import data from file in specified format

Examples of native file functions

1. To read an existing text file into an APL variable:

'‘C: \ Documents\O{ HkngOvzv)" TPVKG" 3

VGZV"g"TPTGCF" 3" 6
TPWPVKG" 3

The whole of thespecified file is read into the APL variabtexTwith characters converted to

APL's internal representation.

2. To create a new text file containing the text 'Hello new file":

'‘C: \ Documents\O{ PgyHkngOvzv)"TPETGCVG" 3
nng"pgy"hkng) 4TPYTKVG" 3"

) Jg
TPWPVKG" 3

106

Learning APL with APLX 107

3. To write out a table of data as a web page:
UcnguFcvec" TGzZ\Paunkehty \BSalesData.html' 'html'
4. To read a table of spreadsheet data in Coi8epmrated Variable (CSV) format:

fcvec" g" TKOR\Dbadrhentk kSpreadsheetDat a.csv' 'csv'

Some more useful system functions

Function

TCHART Draw chart

TDISPLAY Display array structure

TDL Delay execution

TFMT Use specification phrases, qualifiers and decorators to format data for d
THOST Issue command to host

TNEW Create new object (See the chapter on Classes)

TPFKEY Set up Function keys

TSQL Interface to external database

TTIME Time/Date text

TUCS Convert text to/from Unicode
For full details of all system functions and many more examples, see the APLX Langaagal M
Examples

1. To display a chart of sales data:

UCNGU" g" A5" 34§42
TEJCTV" UCNGU

Here we generate some random sales data and display it in chart form in a new window:

Learning APL with APLX

" Il Chart CLEAR WSISALES

File Edit Chart Window Help

SALES[1;

(]

f=

2. To create a new window containing an Edit field.

FGOQ"g")T)"TPGY") Fkcngqi
FGOQOo{ Gf kvOPgy") Gf kv) "
FGOQOo{ Gf kvOvgzv"g") Ug

"] "FGOQOvkvng"g")
| " FGOQOo{ Gf kvOyjgt
og"ucorng"vgzv)

Gf kv "~

9" g

Thiswill create the following window (the appearance will be different if you try this on a

Macintosh or Linux version of APLX):

_r Edit Example

S

[5ome sample text

3. To issue a Widows command to list the contents of a folder:

TIQUV")EOF"1E" f kt)
Volume in drive C has no label.
Volume Serial Number is 07D0 -0B11
Directory of C: \ aplx \'ws
20/06/2001 19:13 [DIR]
20/06/2001 19:13 [DIR]
05/09/2001 16:43 17,792 JIM.aws

108

4

Learning APL with APLX 109

05/09/2001 17:06 574 EXPLORE.atf
30/07/2001 19:49 17,828 QNA.aws

3 File(s) 39,313 bytes

2 Dir(s) 14,797,176,832 bytes free

5. Here we use SQL to connect to a database and read a table of data into tlagi@ite v
employeeData , check how many results were returned, and then display the first five:

1 TUSN")eqgppgev)")crnzqfde)")FUP?Dki Eqtr FD=RYF?
0000
3" TUSN")fq)")wug"dkieqtr)

0000
hkgnfu"§g") HKTUVPCOG. NCUVPCOG. UGZ. GOCKN. GORNQJ[G
*te"gttoui"gorng{ggFcvc+"¢g" 3" TUSN")frbongemployeed natee v
S§gorng{ggFcve

350 6

7" 8Hgorng{ggFcvec
Bert Brown M Bert.Brown@bigcorp.com 1C
Claude Ptolemy M Claude.Ptolemy@bigcorp.com 2 B
Zak Smith M Zak.Smith@bigcorp.com 4E
Sian Jones F Sian.Jones@big corp.com 5C
Eric Smallhorse M Eric.Smallhorse@bigcorp.com 6 C

Learning APL with APLX 111

Operators

Operators form a powerful extension to the repertoire of the language. They can be used to s
theway in which a function or functions are to be applied to da&tey allow a function to be
applied repeatedly and cumulatively over all the elements of a vector, matrix or multidimensiol
array.

They can be thought of as instructions to builand usedefined functions on how to carry out
their operations. You cagven define your own operators!

The operators available are:

Operator Name
/ Slash
\ Backslash

Inner Product

-

Outer Produc
Each

[] Axis

Reduce and scan

When used wittiunctions as their operand, slash and backslash are known asraddcscan.
Reduce and scan apply a single function to all the elements of an argument. For example, to ¢
a vector of arguments, you can either type:

22+93+4.6+ 10+ 3.3
132.9

or alternatively:

+/22 93 4.6 10 3.3
132.9

The/ operatorin the last example had the effect of inserting a plus sign between all the elemer
in the vector to its right.

The\ operator is similar except that it works cumulatively on the data, and gives all the
intermediate results. So:

+\22934.6103.3
22 115119.6 129.6 132.9

Learning APL with APLX 112

from the results of:
22 (22+93) (115+4.6) (119.6+10) (129.6+3.3)

There are more examples of reduction and scan in the APLX Language Manual.
Compress and Expand

When used with one or moreimbers as their operand, slash anctkslash carry out operations
known as compression and expansion.

Compress can be used to select all or part of an object, according to the value of the numbers
forming its operand. For example, to select some characters from a vector:

101101/ ABCDEF'
ACDF

Conversely, expand will insert fill data into objects:

VCD" §" 4" 58858
TAB
123
456
10101 \[2]TAB
10203
40506

Columns are inserted in positions indicated byohgNote also the use of th&is operator- see
bdow).

Outer and inner products

The product operators allow APL functions to be applied between all the elements in one argu
and all the elements in another.

This is an important extension because previously functions have only appimdesponding
elements as in this example:

123+456
579

Theouter product gives the result of applying the functionalb combinations of the elements in
the two arguments. For example, to find the outer product of the two arguments used in the la
exampe:

3"4"5"70-"6"7"8
567
678
789

The first row is the result of adding the first element on the left to every element on the right, tl

Learning APL with APLX 113

second row is the result of adding the second element in the left to every element on the right
so on tillall combinations are exhausted.

This example works out a matrix of powers:

as can be seen more clearly if we lay it out like this:

2 3 4

2 3 4

4 6 8

9 2781
16 64 256

A W N P P

1
2
3
4

(Since the outer product involves operations between all elements, rather than just between
corresponding elements, it's not necessary for the arguments to conform in shape or size.)

Theinner product allowstwo functions to be applied to the arguments. The operations take pla
between théast dimension of the left argument and firet dimension of the right argument,
hence 'inner' product since the two inner dimensions are used.

In the case of matricesyst each row of the left argument is applied to each column of the right
argument using the rightmost function of the inner product, then the leftmost function is applie
the result, in a reduction Y operation.

Given that you can use a combinatioraaf/ two suitable functions, there are over 400 possible
inner products! Obviously these can perform a variety of useful operations. Some of the more
common uses are:

locating incidences of given character strings within textual data

evaluation of polynomia

matrix multiplication

= =4 =4 =4

product of powers

Each
As its name implies, theachoperator will apply a function to each element of an array.

So, to find the lengths of an array of vectors

Learning APL with APLX 114

§A*3"4"5+*3" 4+*3"4"5"6" 7+
325

As with other operators, eachrnche used for usetefined functions. Here we use an average
function on an array of vectors.

AVERAGE 12 3
2

AVERAGE " (1 2 3) (4 5 6) (10 100 1000)
25370

AXis

When a function operates on data of more than one dimension, there is a shoiageh
dimension it should work on.

The default which APL takes if you don't specify otherwise is to operate dastrtimension.

The order of dimensions is the order in which they are defined statement, so the last
dimension is that of the columns. (This was discussed more fully in the Data chapter under the
heading 'Dimension Ordering'.)

If you want to specify a different dimension, you can do so by putting the number of the requir
dimenson in square brackets after the function or operator.

Here's a data structure of two dimensions, catkg] which we'll use in some examples;

VCD" g"4"5"8§"S8
TAB

123

456
+/TAB

615

Since no dimension was specified, the summing oeragiquested by was done on the last
dimension, the columns. The elements in column 1 were added to the corresponding element:
columns 2 and 3. This gave the sum of the elements in row 1 and the sum of those in row 2.

This statement specifies thaetbperation should be done, instead, on the first dimension, the
rows;

+[1]TAB
579

The elements in row 1 were added to the corresponding elements in row 2.

As you would expect, the following statement (which specifies the second dimension, the
columns) is equivalent to the first example where no dimension was specified:

+/[2] TAB
6 15

Learning APL with APLX 115

Here's an example using tRéunction which (when used with one argument as here) reverses tl
order of the elements in the data specified by the argument:

NVCD
321
654

Again it has been applied to the last dimension (the columns) by default. What was column 3 i
now column 1 and visgersa.

Here the first dimension is specified:
N] 3_VCD

456

123

Row 1 has changed places with row 2.

Below isa threedimensional structure such as would be set up by thiatement:

The first dimension consists of two planes (the two blocks of numbers). The second dimensiot
the rows, twan each plane. The third is the columns, three in each row.

The following statement specifies a multiplication operation on the second dimension. In other
words, row 1 is to be multiplied by row 2 in both planes

x/[2]DATA
410 18
70 88 108

The first line is the result of multiplying row 1 by row 2 in the first plane. The second line is the
result of the equivalent operation for the second plane.

The first dimension consists of the two planes. A multiplication on the first dimension will
multiply each element in plane 1 by the corresponding element in plane 2:

x/[1]DATA
7 16 27
40 55 72

You'll find other examples of the use[af (Axis) in the APLX Language Manual.

Learning APL with APLX 116

Axis Specifications

The list of builtin functions and operators that accepiaais specification is:
Mixed Functions: H#H] K, Nk

Operators: / A\ N

For more details see the APLX Language Manual

Learning APL with APLX 117

User-defined Functions and Operators

A userdefined function can be regarded as equivalent to a program in another language. Like
program, it consists ofatements and has a name. When the name is typed in at the keyboard,
statements are executed.

A function can call other functions. Since several functions can exist in the workspace, this me
it possible to adopt a very modular approach to design.

Thediagram below shows how a task might be split into functions. The function caled at
the top calls each function on the level below to perform a specifitaséb These functions call
other functions in the course of their execution.

Control
[1] Setup
[2] Calc
[3] Output
4 .
Setup Calc Output
[1 Vars [1 Sales [1.
[] [1. [1 Format
[] [1 Stats
[1 Window []
[]
Vars Window Sales Stats Format

1. (1. 1. (1. []

Any of the functions could of course be usedwather functions to do a different overall task.

Wwindow for example, might create a new window and give it a title. Given that the title could be
whatever text was currently in a particular variable, such a function might be useful in a numb:
different applications.

Functions are often only a few lines long, so the structure shown doesn't necessarily represen
some vast commercial project. With APL a modular approach comes naturally even for smalli
programming tasks.

Arguments and results
User functons need not have arguments. A user function may be a series of APL lines with ar
which, when entered, causes the lines to be executed. The name on its own calls the function

no arguments are specified. Such functions are cailadic functions.

Alternatively, functions can be defined in such a way that when you call them, you must provic
arguments, just as you would with a bumitAPL function. Here for example, the buiitt function

Learning APL with APLX 118

L is being invoked to round up some numbers:
L80722;"3409"55055555";2; 023
The numbers are supplied as the rigabd argument.

If you defined a function called, sagpwhich found the standard deviation of a set of numbers,
you could write it so that expected the data as its rigidnd argument. You would then catbin
exactly the same way as a primitive function such: as

SD 238956 1299 2 16 92

Functions with one argument, lilg®are callednonadic functions. You can equally well deé

and use functions with two argument@dyadic functions. Indeed, if you want you can write a
function which (like a builin function) can sometimes have one argument and sometimes two,
and you can make the action the function takes depend on whether two arguments are
submitted. (The first line of such a function would normally be a test to determine how many
arguments had been submitted.) Another useful option is the ability to return a result from a
function.

You specify the number of argumetite function is to have, and the name of the result field (if
there is one) when you define the function header of the function you are about to write.

User-defined operators

Userdefined operators are rather more complex, in that they will have on® opevands that

is functions that they will apply to data and the function that results from the combination of
operator and operands may itself have one or two arguments. Since operators exist to modify
behaviour of functions, a usdefined operatomust have at least one operand.

Userdefined operators can be treated like wdfined functions for the purposes of editing and
entry.

Editing functions

In most versions of APLX, there are two ways to create or edit a function.

The most commonly used ws to use dull-screen editor which allows you to edit the function
text very easily in an editor window. The editor is either invoked through the application's Edit
menu, or with théeDIT system command (or theG F ksystem function), e.g.

JEDIT FUNK

Here is a snapshot of an editor window on a Windows system, showing a function called
DEMO_Taskbar being edited:

../images/aplx_editor.jpg

Learning APL with APLX 119

Edit HELPSYSCLASS: DEMO_Trackbar (=] B [
File Edit Attributes Tools Window Help

[0l IDEMO_Tr‘aCkbaI‘:'v'E?SIE\:IIIZ:CE_T?AS(:CE_CLCSE:)‘.:ZEW} -~
[1] |a Sample function demonstrating use of the Trackbar object T
[2] |a

[3] |a The windows version of this function demonstrates features not

[4] |a available on the Mac or Linux. The Mac/Linux Trackbar is very simple.

[5] |DI0e1

[6] |VERSION«'O' OWI 'version'

[71 :If VERSION[2]1=1 3
[8l A Running under Windows: 3
[9l DEMO<'O' ONEW 'Dialog' ¢ DEMO.titlee'Trackbar Example' ¢ DEMO.scaleel

[10] 0.myTrackbar.New 'Trac ' ¢ DEMO.myTrackbar.wheree2 1

[11] O.myTrackbar.styleel ¢ MO.myTrackbar.valuee35

[121] MO.Labell.New 'Label' ¢ D .Labell.whereel 1

[13] C.Labell.captione'Move s er to set threshold

[14] 0.Label2.New 'Label' o DEMO.Label2.whereeb 1 ¢ DEMO.Label2.colore255 4
[15] 0.Label2.captione'’

[16] A

[171] A Create a 1little callback which will run when the user closes the window

[18] A This prevents the window being closed asynchronously

[19] DEMO.onClosee's'

[20] A

[21] A Must show window now, otherwise it won't appear until after loop below

[22] DEMO. Show

[23] A

[24] iWhile 1

[25] A Loop round until the CB_CLOSE callback has run

[26] A Set some random value in the 'selection' property

[27] DEMO.myTrackbar.selectione(0,7?80) X
KB: UniAPL | Fn: DEMO_Trackbar <| Bl

For backward compatibility with old APL systems, APLX also supports a primitivealhadime
editor called théel editor. To enter definition mode drcreate a new function you typgDel)
followed by the function name. If you type nothing else, you are defining a function that will tak
no arguments:

h HWP M
For clarity, we will list functions here as though they were entered using the Del editor, viihere
character is used toark the start and end of the function listing. Listing functions in this way
makes it clear at a glance that you are looking at a function. It's also a convention commonly t
in other APL documentation on the Internet.

If you are using the normal fudcreen editor, yowdlo not typethen characters or the line
numbers.

The function header

The first line of a function is called the function header. This example is the header for a functi
calledFUNK

h HWP M

If you want the function you are defining to have arguments you mustgmtiththe header by
typing a suitable function header:

../images/aplx_editor.jpg
../images/aplx_editor.jpg

Learning APL with APLX 120

hUF" Z

The above header specifies tBatwill take one argument. Here is wisttmight look like when
you had defined it:

hUF" Z
_"uUwo" g" -1z
_"CX" g" UWOES§ Z
_"FKHHXg" CX
4]SQD KHH" §" FKHH, 4
7 _"USCX"§g"*-1USFKHH+ESUSFKHH
8 "TGUWNV"§"USCX, 207
h

]
]
]
[
]
]

It's quite unimportant what the statements in the function are doing. The point to notice is that
use the variabl& named in the function header. Wh&mis run, the numbenyped as its right

hand argument will be put intoand will be the data to the statements thatusethe function.

So if you type:

SD 12 45 20 68 92 108

those numbers are putxEven if you type the name of a variable instead of the numbers
themselves, the numbers in the variable will be putinto

The function header for a dyadic (tvabgument) function would be defined on the same lines:
hZ"ECNE" [

(Remember that you don't type théelel character if you are entering the function in an editor
window).

When you subsequently usaLCyou must supply two arguments:
147CALC0923
WhencALCis run the left argument will be puttox and the right argument into

If you want the result of a function to be put into a specified variable, you can arrange that in tl
function header too:

h\"g"Z"ECNE" |

In practice most APL functions return a result, which can then be usedresexgms for further
calculations, or stored in variables.

Defining z to be the result of cALC Y allows the outcome afALCto be either assigned to a
variable, or passed as a right argument to another (possibidefsged) function, or simply
displayel, by not making any assignment. The variabéets as a kind of surrogate for the final
result during execution @fALC

Learning APL with APLX 121

The operator header

The operator header must accommodate operands as well as the arguments of the function d
from it and so tk header is more complex. The operator name and its operands are enclosed i
parentheses. Thus a monadic operator whose derived functions will take two arguments and r
a result, has a header:

hT"g" Z"* NQR" QRGTCVG+" |

whereLOPis the left operandndXx andy the left and right arguments. A dyadic operator whose
derived function will take two arguments and return a result, has a header:

hT"g" Z"*NQR" QRGTCVG" TQR+" |

Other than its special header line, udefined operators obey the same internlds as detailed
below for userdefined functions.

Local and global variables

Variable names quoted in the header of a functiooaad. They exist only while the function is
running and it doesn't matter if they duplicate the names of other vaniatfesworkspace.

The other variablesthose used in the body of a function but not quoted in the header, or those
created in calculator modere calledylobal variables.

In thesDexample abovex was named in the header® a local variable. If astherx already
exists in the workspace, there will be no problem. Wm®is called, thex local tosDwill be set

up and will be the one used. The otkevill take second place till the function has been executed
and of course, its value won't be afied by anything done to the localThe process whereby a
local name overrides a global name is known as 'shadowing'.

It's obviously convenient to use local variables in a function. It means that if you decide to mal
use of a function written some tinbefore, you don't have to worry about the variable names it
uses duplicating names already in the workspace.

But to go back to thebexample. Only is quoted in the header, so oxlys local. It uses a
number of other variables, including one cakedu If you already had a variable calledmin the
workspace, runningdbwould change its value.

You can 'localise’ any variable used in a function by putting a semicolon at the end of the func
header and typing the variable name after it:

hUF" Z=UWO

You may wonder what happens if functions that call each other use duplicate local variable na
You can think of the functions as forming a stack with the one currently running at the top, the
that called it next down, and so on. Aaence to a local variable name applies to the variable
used by the function currently at the top of the stack.

Learning APL with APLX 122

Branching

Traditionally, the APL right arrowh' has been used to control execution in wefned functions
and operators. It can be usedasonditional or unconditional branch, and thus allows conditiona
execution and loops to be programmed.

We'll start by introducing the traditional APL branching technique, which is supported by all AF
dialects, before considering the modern APLX altéveaof using structuredontrol keywords
like :IF and:WHILE.

The symboh is usually followed by an integer scalar, vector, or label name which identifies the
line to branch to. If the argument is a vector, the first element of the vector determines the line
which execution will continue, and subsequent elements are igribted line number does not
exist, the function terminates (often a line number of 0 is used for this purpose). If the argume
an empty vector, no branch is taken and execution continues at the next statement. Thus,
conditional branches can be pragiraed by using a right argument which, at-tume, evaluates
either to an integer scalar/vector, or to an empty vector.

You will rarely useh on its own, that is, unconditionally. Consider the following case:

[1]..
14 _"he

3] ...
[4] ...

When this function is run, line 1 is obeyed, then line 2 then line 4. Line 3 is always omitted
because the branches round it. This seems pointl&Sisnilarly, the unconditiond in the
following sequence seems to have created a closed loop of instructions that will repeat foreve

[1] ...
2] ...

Bl..
16 _"h"3

It's more common to useconditionally as in the following example:

] 5 _ " hRKIFASS)/7

[4] 'YOU PASSED. CONGRATULATIONS.
[5] ...

6] ...

[7] 'BAD LUCK. TRY AGAIN.'

The condition(MARK<PASS)will generate a 1 or a 0 depending on the values contained in the tw
variablesMARKandPASS If the condition is met, the resudt 1. Using the function in its

selection role, as was illustrated earlier, the right argument éfith@. Thus execution 'goes to' or
'branches to' line 7. On the other hand, if the condition is not metpwetselect 7, in other

words an empty vector is generated as the right argumerartd execution carries onto the next
line.

The statement olne [3] could thus be read as:

[3] goto 7 if MARK<PASS

Learning APL with APLX 123

There are very many different ways of generating branches within an APL function, and these
discussed in more detail in the APLX Language Manual. For now, the expression used in the
example abo will be used to generate branches in a function.

The last example provides a situation where an unconditional branch may be appropiere. If
is not less tharASS we proceed with line 4, but it looks unlikely that we would also want to
execute lin€7, We put & before line 7 and branch round it:

]5_ "h*OCTM>RCUU+19
[4] 'YOU PASSED. CONGRATULATIONS.
[B]...

]18_"nh;

[7] 'BAD LUCK. TRY AGAIN.'

[8 ...

[9] ...

Looping

Branching in many programming languages is used to set up loops: segjoétstructions that
are obeyed repeatedly till a count reaches a certain value. The count, of course, is incremente
each time the loop is executed.

Loops are rarely necessary in APL, since much of the counting that has to be specified in othe
languags is implicit in the data structures used in APL and is done automatically, For example
the following statement will add the valuessSALES whether there are two values only, or a
thousand:

+/SALES

If a loop is necessary, it can be constructadgia statement similar to the branch statement
shown above, the condition test being the value of a loop count. (The erfirip fitre APLX
Language Manual gives some examples). Alternatively you can use structured control statem
like :WHILE and:REPEAT.

Labels

After an editing session in which you've inserted or deleted lines, the function editor renumber
function to make sure lines are whole numbers and there are no gaps. So next time you edit c
the function, the line numbers may be diffiet. For this reason it's much safer to 'goto’ labels
rather than to line numbers.

Here's an earlier example, this time withreferencing labels rather than line numbers:

]5 "h*OCTM>RCUU+1HCKN
[4] 'YOU PASSED. CONGRATULATIONS.
[B]..

]8 _"hPGzV

[7] FAIL: 'BAD LUCK. TRY AGAIN.'

[8 ...

[9] NEXT: ...

Learning APL with APLX 124

Labels are names followed by colons, They are treated as mtables and have the value of the
line numbers with which they are associated. For example, theFlabein the extract above will
be set up when the function is run and will have the value

Ending execution of a function

When the last line in a furionh is executed, the function stops naturally (unless, of course, the Ie
line is a branch back to an earlier line). To end a function before the last line is encountered, y
can go to a line number which doesn't exist in the function. The safest firtgendor this purpose
(and the one conventionally used) is O.

The following statement causes a branch to 0 (in other words, terminates the function) if a var
calledx currently has a value less than 1.

]6_"h*z>3+12

Structured control keywords

As wdl as the conventional branch arrow, APLX suppsttsicturedcontrol keywordgor flow
control, often making for more readable functions. The keywords all begin with a colon charac
and usually appear at the start of the line (APLX will automaticatlgmt lines within a block for
you). For example:

]5_"<Kh"OCTM"J" RCUU
[4] 'YOU PASSED. CONGRATULATIONS.'
5] ..

[6] :Else

[7] 'BAD LUCK. TRY AGAIN.'

8] ..

[9] :Endif

The structured control keywords are not part of the International Standards Organisation (ISO
specification of the APL language, but they are supported by a number of APL implementation:
including APLX.

Structured control keywords include:

Function Keyword

Conditional execution :If/ :Elself / :Else / :Endlf

For loop :For / :EndFor

While loap ‘While / :EndWhile

Repeat loop ‘Repeat / :EndRepeat

Case selection :Select / :Case / :CaselList / :Else / :EndSelect
Branch :GoTo

Terminate current functic:Return (equivalent tcnh0)

Here is a simple example:

Learning APL with APLX 125

hl WGUU=XCN
[1] 'Guess a number

[2] :Repeat
]5_"""""XCN"¢g"T
[4] :If VAL=231153

[5] 'You were right!

[6] ‘Leave

[7] :EndIf

[8] 'Sorry, try again..'
[9] :EndRepeat
h

The amount of indeation does not affect the execution of the function, but it does make it easi
to read. If you are using the editor window, you can select 'Clean up indentation' from the Edit
menu to ident the function appropriately.

See 'Control Structures' in the APILanguage Manual for further details.
Comments in functions

If you want to include comments in a function, simply type them in, preceded byrabol
(known as 'lamp")

hT" g" CX" Z
" "Vj ku"hwpevkgp"hkpfu"vjg"cxg
g ct

13 _"6" ¢
14 "Trg"*-1Z+E8Z2"6"Vjg"pwodgtu"

[h"ugog" pwo
"k

t g"q
g p"Zz
There are two comments in the example above. Note that the one on line 2 doesn't start at the
beginning of a line.

Locked functions

It's possible to lock a function. A locked function can only be run. You can't edit it or list the
statements it consists of. To lock a function, edit it in the Del editor but tgpather than & to
enter or leave function definitiamode:

]34 "R

There may be occasions when you want to make code secure from tampering or scrutiny. But
certain that it's errefree and in its final form a locked function cannot be unlocked.

Ambivalent or momadicofunctions
All dyadic functions may be used matieally. If used monadically, the left argument is undefinec

(i.e. has a Name Classificationp ©f 0). This type of function is known as an ambivalent or
nomadic function, and will usually start by testing for the existence of the left argument.

Learning APL with APLX 126

hTgC" PQOCFKE"D

]3_"<Kh"2?2TPE")C)"""""""" 6" FQGU" C" GZKUVA
la_"""cCcg7rrrrrrrnnmmmnmmngrpQ, " UQ" YG"ICXG" DGGP" WL
[3] :EndIf

...etc
h

Learning APL with APLX 127

Component Files

This section discussesmponent fileswhich are used as a very easy wagttwre and retrieve
APL data in a proprietary format. APLX is also able to access other types of files (e.g. text anc
pictures) via a number of system functions. For example, see:

'APLX Native File Support' for operations on RARL files.
The 7sgL.commandor interfacing to external databases

The system classes 'picture’, ‘'movie’ and 'image’ objects for image display and
manipulation

1 The 7exrPormNd riMPORTCcOMMands for conversion between a number of file formats
e.g. Commsaseparated variable (CSV) filesed for spreadsheets.

Note: APLX supports two different component file systems. The first of these is based on the 1
access primitivesin 06 (as implemented in APL. 68000), and is discussed in this section.

The second is based on system functiool asT H Vv Kaad is provided primarily for compatibility
with APL interpreters from other vendors. For more information, see the section '‘Component F
Systems' in the APLX Language Manual.

APL was originally implemented without a filing system becaussaifaple purposes the facilities
provided by the workspace are quite sufficient. In general you can keep all the data you need
current workspace with occasional 'imports' from a saved workspace.

However, occasionally this may not fit your requiretsefror example, if you wrote a suite of
functions which produced monthly profit and loss accounts, you might want to store the data fi
each month separately. You could arrange to keep the data in a series of stored workspaces,
you wouldn't want to m@icate the functions in each of these workspaces.

You could get round this by having the functions in the active workspace angcsmgo copy

in the data for each month from a stored workspace. (Copying doesn't obliterate what's alread
memory, wlile using)LOAD does). But a more efficient method is to store each month's data in «
file, and read that file into the workspace when it's needed.

APLX has a very flexible and simple filing system available for such situations.
Files
APLX files are idenfied by number rather than by name. Any integer can be used. An APL file

can be regarded as a series of numbered pigetas with the useful feature that (subject to space
being available) each pigeon hole can hold as much or as little as you like.

Learning APL with APLX 128

Components

The pigeorholes are called components. A single letter of the alphabet may constitute one
component while a matrix containing several thousand numbers may be its next door neighbo

Functions can be stored in files as well, but they must firsbbeested into charactenatrices by
the system functiom E ,Tor stored via the overlay system functipr x

Basic file operations

Creating a file is simply a matter of writing a component to it. The command for th{Qisad-
Write). If the file alreadyexists, the component is added to it in the appropriate position. If the f
doesn't exist, APL creates it and then writes the component to it:

VCDNG"n"5"3

The above command puts the contentsA®LE into component 1 of file 3, creating file 3 fin§
necessary.

Here's another example:
RTKEGU" fn" 5" 4

The information held iPRICES will become component 2 of file 3, overwriting component 2 if it
already exists.

Reading data from a file follows the same principles. To get component 1 fronydéle8ould
type:

N"5" 3

In the form shown, the commandQuad-Read) will cause the contents of component 1 to be
displayed on the screen.

It's more likely that you'll want to put the data into a variable and carry out some operation on
The following statement reads component 2 from file 3 and assigns it to a variableacalled

C"g" N"5" 4
Deleting a component or file is specified in much the same way using a comr(f@ndd-Drop):

6" 5" 4
deletes component 2 from file 3, renumbering comptim the same way lines in a function are
renumbered after deleting a line. Similarly, components can be inserted by writing to a numbe
lies 'between' two components:

RTKEGU"n"5"307

The last example, will write a component containing thermftdion inPRICES between

Learning APL with APLX 129

components 1 and 2. The components in the file will then be renumbered in the same way line
a function are renumbered after inserting a line.

For a fuller explanation of reading and writing component files, see 'ComponeBlyBims’ in
the APLX Language Manual.

Learning APL with APLX 131

Error Handling

Errors in calculator mode

If you enter a statement containing an error in calculator mode, APL responds with an error
message. For example, if you attempt an operation on unsuitable data, yollyngetreadomain
error:

3"3"2"33"1"3"3"2"2
DOMAIN ERROR
3"3"2"33"1"3"3"2"2

AN

As the example shows, the statement containing the error is displayed with an error ingicator (
marking the point at which the APL interpreter thinks the evomurred.

To correct an error in calculator mode, simply retype the statement correctly, or alternatively u
the recalline key (usually CtHUp Arrow, or CmdUp Arrow on the Macintosh) to recall the
statement, then edit it and-eater it. In most versns of APLX, you can also correct it directly in
the window, and then press Return or Enter teva&uate it.

Errors in user-defined functions or operators

If an error is encountered during execution of a-alefined function or operator, execution gop
at that point. The appropriate error message is displayed, followed on a separate line, by the r
of the function containing the error, the line number at which execution stopped and the staten
itself:

LENGTH ERROR
Cl2]12 - 123
N

The aboveexample shows that execution stopped in funactianline 2.
The Debug Window

As well as displaying the error in the Session Window, desktop editions of APLX will normally
display the Debug Window if an error occurs in a wd&fined function, operatory @lass method.
This shows the function or operator in which the error occurred, and allows you to edit the line
immediately and continue:

../images/aplx_debugger.jpg

Learning APL with APLX 132

2]
Debug HELPJAVA:DEMO_TimeZone el (=
File Edit Debug Attributes Tools Window Help
PO LOGICAL UNIT NOT FOUND Resume at line
| | 0 _TimeZonel 1: classe' jeva’ GETC []
Q DEMO_TimeZone[12] tzclass~'jeva’ DGETCL| 31 E > 9| 4 X|
DEMO_T imeZonel13] RN DEMO_TimeZone;date;tzclass;tz;dateFormat;datelList -
DEMOL4] [1] a
[2] A Demonstration of using a TimeZone object in Java
[3] A =
[4] A First create a date
[5] datee' java' ONEW 'java.util.Date'
[6] A
[7] A What is the date?
[8] 'Result of date.toString: ',date.toString
[9] e
[10] =~

[111] ~a To create a TimeZone object we need to call a static
[12] @A method in the TimeZone class

[13]* tzclasse' jeva' OGETCLASS 'java.util.TimeZone

[14] tzetzclass.getTimeZone 'America/Los_Angeles

[15] =~

[16] ~a Could also call the static method directly... =

L1721 ___£=.'1AUA' OCALL ' bSaun uf il TimaZonoe aotTimaZoanoa' 'Amoric
KB: StdAPL |Fn: DEMO_TimeZone 4| | >

In this example, an error has occurred on line 13 of the function, so execution has stopped the
Normally you would edit the incorrect line in situ (in this caseexing the spelling mistake ‘jeva’
instead of java’), and then press the Run button (the solid triangular arrow) to continue execut
You can also resume at a different line (by dragging the small green position indicator, current
on line 13, or bysing the 'Resume at line' control), or abandon the function by pressing the Qu
(red cross) button.

Interrupts

A function or operator can also be halted by the user hitting the interrupt key (usuabByeztkl

on Windows, CmePeriod on the Macintosh, @trl-C under Linux). A single interrupt causes
APLX to complete the line of code it is executing before stopping. Two interrupts in quick
succession cause it to stop as soon as it can, even if it is executing a single calculation which
a long time for example inverting a matrix with). TheT E Q Bystem function allows interrupts to
be switched off (see the APLX Language Manual).

The state indicator

It may be that the function at which execution halted was called by another function. You can
inspect a system variable called ktheState Indicator, to see the state of play:

../images/aplx_debugger.jpg
../images/aplx_debugger.jpg
../images/aplx_debugger.jpg

Learning APL with APLX 133

TUK
C[2]

B[8]

A[5]

This display tells you that functianwas called from line 8 of functiomwhich was itself called
from line 5 of functiom.

The asterisk on the first line means that the functionetham that line is suspended. The other
functions arependent; their execution cannot be resumed till execution of function C is
completed.

If at this point you executed another functionwhich called functiorg, and at line 3 of a
further error ocarred, the state indicator would look like this:

E[3] *
D[6]
Cl2] *
B[8]
A[5]

Effectively it contains records of two separate sequences of events:

E[3] *
D[6]

You can clear the top level of the state indicator (i.er¢kerd of the most recent sequence) by
entering the branch symbiobn its own:

A
TUK
C[2]
B[8]
A[5]

In this example, anothérwould clear the remaining level (now the top level) and restore the sta
indicator to its original (empty) state

Alternatively, you can clear the entire state indicator at any stage by using the system commal
)SICLEAR .

Action after suspended execution
Apart from examining the state indicator, what can you do when execution is suspended?

If you want to resume exetion at the point where it stopped you can do so by using the symbol
followed by the line number. If, for example, execution halted at linee3 tofresume at that point

Learning APL with APLX 134

you could type:

h5

A system variablg E mgontains the current line number, so you could achieve the same effect b
typing:

hTEN

You don't lave to continue from the point where execution was suspended. You can specify a
other than the current line:

oD

6

TEN- 3

Equally, you can specify execution of a different function.
Editing suspended and pendent functions

What's perhaps mobkely after an error in execution of a function is that you'll want to edit the
function containing the error. (It's marked witln the Sl display and, as you may remember, is
described as a suspended function). This is done in the normal way by Esingor usingh and
the function name to enter the del editor), and then making the required correction, or directly
the Debug Window.

It's possible that after editing the function you may get this message:
S| DAMAGE

This indicates that you've done somethingalihmakes it impossible for the original sequence of
execution to be resumed. No action is necessary other than to use the system csnonresrl
to clear the state indicator.

What you cannot do after a halt in execution is to edit any of the pendatibhsnd hey are the
functions in the state indicator display that ao¢ marked with an asterisk:

TUK
E[3] *

D[6]

C[2]

B[8]

A[5]

An attempt to edit a pendent function using the Del editor will produbEFs ERROR

h C
DEFN ERROR
h C

AN

Similarly, you can edit the function usingpIT A but APLX will not let you save the changes
because the function is pendent. You will get the error message "Cannot fix-dbjection is on

Learning APL with APLX 135

)SI stack™
If you want to edit a pendent function, simply clear the state indicator \8TIFAR .
Error trapping and tracing

You can specify in advancehat should happen if an error occurs during execution, in which cas
that error will not cause execution to stop. For example, if you wrote a function which invited tf
user to type in some numeric data, you might foresee the possibility that he or $théyweunon
numeric data instead. This would cause an error. APLX allows you to ‘trap’ the error at runtime
There are two main ways of doing this:

1 A block of code (including any functions called from within the block) can be executed
under erroitrapped onditions usingTry .. :EndTry . If an error occurs, control passes to
the:Catchlf ~ or:CatchAll ~ sections.

1 Simple error trapping on a single line or expression can be achievedrasjnghich
allows an alternate line of code to be executed in the event of an erTacg, erhich
executes code under error trapped conditions and returns a series of result codes. The:
compatible with IBM's APL2.

APLX also implements the oldgrG Tstyle of erroftrapping, which specifies a line to be branchec
to if an error occurs. Use 9fG Tig not recommended for new applications.

In general, it is probably best not to mix different styles of emagping in a single function.
However, if you @, and an error occurs in a line where more than one error trap is live, then th
error trap which will take effect is the first of:

TGC
TGE

Try ... :EndTry
4, TGTZ

1.
2.
3.

Error -related system functions

A number of system functions are available for finding out wlaer error occurred and why, or for
simulating an error. These include:

TERSwhich can be used to signal an error (see also the ABhfpatible equivaleres).

TERMwhich displays the current error message (see also the-&dthpatible equivalent
TEM.

1 TLERwhich contains the error code and line number for the most recent error. Each kinc
event that can be trapped has an error code. A DOMAIN ERROR, for example, is numt
11. (See alsgET which holds the last error code in a format compatible with APL2)

Other debugging aids

1 T1sTOPallows you to set 'breakpoints’, i.e. specify that a function should stop at a given li
(Normally, the Debug Window will then be invoked). On desktop editions of APLX, you

Learning APL with APLX 136

can also set or clear breakpoints by clicking m ltheenumber area of an Edit, Debug or
WS Explorer window.

1 TTRACEcan be used to display a record of the results when certain ‘traced’ lines are
executed.

Learning APL with APLX 137

Formatting

The default way in which APL displays results may not always suit your requirer@visusly
you can do a certain amount by using functions like size to reshape data, or catenate to join d
items, but for many applications you may want much more sophisticated facilities. You may, fc
example, want to insert currency signs and spacesmeric output, or produce a neatly formattec
financial report, or specify precisely the format in which numbers are displayed.

APLX has a variety of functions for formatting data, providing flexibility as well as compatibility
with a number of other APInterpreters.

Formatting
There are three functions in APLX which both:

9 convert the format of data from numbers to characters

1 allow you to specify how (converted) numeric data will be laid out.

The functions ar® (Format or Thorn), § (Alpha) and the systa functionT H 0 They can be
used purely to convert numeric data to characters. The converted data looks the same, but he
properties associated with character data.

Additionally, each function lets you specify how many character positions a numioéd sho
occupy when it's displayed, and how many of these positions are available for decimal places.
number of characters and number of decimal places are specified in the left argument:

8" 4" 0" 35630: 4; 43
341.83

(Note that since the number had tothencated to fit the character positions allowed, it was first
rounded to make the truncated representation as accurate as possible.)

§ has the optional extra facility of allowing you to use editing characters to define a 'picture’ of
how data is to look tven displayed. The picture is the left argument and the data the right.

The following example shows the values in-eo#& 2-column matrix called'AB. It then shows the
$§ function applied to this matrix and its effect owB:

TAB
1096.2 ~416.556
296.974 1085.238
©811.188 844.074
"745.416 153.468

) &&\ .\ \;0,;;"FT®rmrmnrrr Yy ST VCD
$1,096.20 $416.56 DR
$296.97 $1,085.24
$811.19 DR $844.07

$745.42 DR $153.47

Learning APL with APLX 138

T H otekes the process a stdgether, allowing a variety of picture phrases, qualifiers and
decorators to be supplied as the format specification.

) D" M4" 1 >"\\ ;" FQNNCTU"CPF"; ; "EGPVU@) " THOV": 045"
8 DOLLARS AND 23 CENTS
12 DOLLARS AND 86 CENTS
2 DOLLARS AND 52 C ENTS

More details of these functions are given in the APLX Language Manual.

Learning APL with APLX 139

User-Defined Classes in APLX Version 4

Introduction

APLX Version 4 adds objeariented programming facilities to APLX's core ARt@8mpatible
language. These facilities areobdly similar to those implemented in other objecénted
programming languages (such as C++, C#, JAuly, or R), but with the difference that APL's
arrayprogramming approach applies to classes and objects in the same way as it applies to
ordinary dataln addition, the APLX implementation is fully dynamic, that is to say classes and
objects can be changed at +ime or when debugging.

Classes can be written in APL, or they can be written in other languages (such as C#), or they
be builtin to the APLX interpreter as System Classes (analogous to the familiar System
Functions). In this tutorial, we'll focus on classes written in APL. (If you want to try out the
tutorial yourself, you can download a demonstration version of APLX Version 4 from
http://www.microapl.co.uk/apl/

The objectoriented extensions to APLX are not part of the International Standards Organisatio
(ISO) specification of the APL language, although some other APLs have similar facilities.

Jargon

The fundamental building block for objeatiented programming is thaass For example, in a
commercial invoicing application, a given class might represent the attributes and behaviour o
invoice, and another class might represent a cretbt froan application concerned with
geometry, a class might represent a sphere, or a rectangle, or a polygon. A class contains
definitions both for program logic (functions and operators, known collectively asetmodsof

the class), and for data (nadheariables associated with the class, knowpraperties). The term
membersis used to describe both the properties and methods of a class.

In most cases, when you come to use a class, you need to crem@@aceof that class, also
known as ambject. Whereas the class represents an abstraction of (say) an Invoice, or a Sphe
or a Rectangle, an object represents a particular invoice, sphere or rectangle. Typically, you n

have many instances of a given class, each containing independent copisf@bgerties), but
all supporting the same program logndthods.

Getting Started

To make this clearer, let's use an example of a class representing a circle. To keep things sim
initially, we will give theCircle class a single property represegtthe radius of the circle.

There are a number of ways to createding@e class, but for now just we'll start withcREAR WS
and enter the following APL line, which creates a class and inserts a property called ‘radius' in

) Ekteng) " TK&")tcfk

This has created a new class, which we can see by usiig #8sSES system command, which is

http://www.microapl.co.uk/apl/

Learning APL with APLX 140

analogous toFNS and)VARS:

)JCLASSES
Circle

To create an instance of thecle class, you typically use the
T P Gsystem function:
Hkt uvEKt e[nPgG'Y§J'"Ekt eng

This has created a new instance (object) and assigned a reference to it in the variable
FirstCircle

)VARS
FirstCircle

If you try to inspect the new object, APL will display it in the following format by default. Note
that (unless you cimge the default display), the object is displayed by showing its class name it
square brackets.

FirstCircle
[Circle]

Now let's assign a value to the neicle object's radius:

Hkt uvEktengOtcfkwu" g" 32
FirstCircle.radius
10

Note thedot-notation used to specify the object and property being assigned. Except that it's a
member of the objectrstCircle , the radius property behaves like any other APL variable:

SHkt uvEkKkt engOtcf kwu
12345678910

FirstCircle.radius=20
0

We canalso create a vector containing five different circles:

EktengNkuv" §g"TPGY" A78Ekteng
CircleList
[Circle] [Circle] [Circle] [Circle] [Circle]

It is possible to set the radii of all of the circles in the same statement:

Ekt engNkuv Ot &0F5R 2080 29 "
CircleList.radius

10 50 20 30 20
CircleList.radius=20

00101

Notice that APLX lists the radius values for all five circles in a single vector, which can be use:

Learning APL with APLX 141

expressions.

We could also specify all the radii using a sengtalar, in which case the scalar is assigned to th
radius property in each object using scalar extension:

EktengNkuvOtcf kwu"g§g" 42
CircleList.radius
2020202020

You cannot access a property if it does not exist in the class definition. For example:
Hkt uvEkt engOEgngwt " g") Tgf)

VALUE ERROR
Hkt uvEkt engOEgngwt"g") Tgf)

AN

To add a newnpperty it is necessary to modify the class definition, which we will cover in more
detail later.

Now let's add a method callegea to ourcCircle class. Again, there are many ways of editing
classes in APLX, but for now you can use the following:

)E DIT Circle.Area
Use the editor window to create the following method:

hTgCtgc
]3_"T"g"*G@3+6tcfkwu, 4

h
(You do not enter the characters or line number when using the editor window).

We can now call our new method using the following notation. (Notice that the new method ca
applied to existing objectstry doing that in Java!)

FirstCircle.Area
314.1592654

Within the method, the object's radius can be referred to directly aadust , without using dot
notation. APL knows that therea method has been called for the objgeitCircle , and hence
uses the radius value contained in the object.

Again, if you have an array of objects you can apply the same method to each one.

EktengNkuvOtcf kwu"g"32"72"42"52" 42
CircleList.Area
314.1592654 7853.981634 1256.637061 2827.433388 1256.637061

Internally, APL will call thearea method on each of the objects in turn, in the order in which the
occur in the object list.

It is also possible to have vectors containing references to objects of different classes. Suppos

Learning APL with APLX 142

we have a new class calleduare , in addition to oucircle class, and thaquare also has a
class method callegrea :

HktuvUswctg"g"TPGY") Uswect g)
UjcrgNkuv"g"HktuvEkKkteng. Hkt uvUswctg
ShapelList

[Circle] [Square]
ShapelList.Area

314.1592654 100

Note that there is not necessarily any relationship betweexd¢hanethods in theircle and
Square classes.

What would happen if we create aneircle object and immediately try to display itslius
property?

CpqvjgtEkteng"g" TPGY" Ekteng
AnotherCircle.radius

VALUE ERROR
AnotherCircle.radius

AN

Because the radius property of the new object has not been assigned, wa getERROR the
new object is incomplete. Is there some way we can ensure that only combleliebpjects are
created byl P &Y

One way in which this can be done is to add a new class method c@detstuctor. This is an
APL method which has the samame as the class. The APL interpreter will call the constructor
method automatically when a new object is created.

The Constructor for the Circle class might look something like this:

hEkteng"T
]3_"tcfkwu"g"T
h

Note: We haven't worried too raln yet about how to edit APL classes. APLX has a powerful cla:
editor, which is what you would use in practice. For now, if you want to experiment with adding
this constructor to your class, try:

)EDIT Circle.Circle

The constructor method we addeétés a right argument, which is the initial value of the new
circle object's radius. To create the circle, the value is passed as an argunre Yo

CpgvjgtEkteng"g" TPGY"Ekteng" 322
AnotherCircle.radius
100

In some objecbriented languages, constructors are the only way of assigning initial values to
properties. In APLX, it is also possible to specify the default value of any pregpartithe class
definition. Instead of using a constructor, we could have changed our Circle class to specify th

Learning APL with APLX 143

the radius property of all new Circle objects should have an initial value of 10. This is discusse
further in the sectioifypes of Propertpelow.

System Methods

As well as usedefined methods likarea above, each object/class can make use of a number o
system method There are around a dozen of these, but for now we will just note two. The syst
methodT E N C U U retwiies the name of an object’s class as a character vector:

Hkt uvEkt engOTENCUUPCOG
Circle

The system methog P gan be used to discover the names of the methods and properties in a ¢
(or an instance of that class):

EktengOTPN"5
Area

Hkt uvEkt engOTPN" 4
radius

Inheritance
Suppose that we wanted toweite our example to handle two types of shape, circles and square
One way to do this would be to use a general class cstilg@. We could add a property which

specified thaype of shape (O fatircle , 1 forSquare), and we could add axrea method,
something like this:

hTgCtgc
[1] :If type=0
14 _""""6"Ekteng
]5_""""T"g"*03+06tcfkwu, 4
[4] :Else
]7_""""86"Uswctg
]g_""""T"g"ukfgngpivj, 4
[7] :EndIf

h

However, in objecbriented APL there is a much more elegant way to do this, by using
Inheritance.

When you define a class, you can specify thiahierits from another class. The new class is said
to be thechild, and the class it inherits from is tharent or baseclass. Inleritance means that

(unless you explicitly change their definition), all of the properties and methods defined in the
parent class are also available in the child class. This works for further levels of inheritance as
well, so that methods and properties de inherited from the immediate parent, or from the
parent's parent, and so on. The tedasved classe®r descendantsare sometimes used to
denote the children of a class, and the children’s children, and so on. Similarly, ta@t¢estors

Learning APL with APLX 144

of a class is used to denote the parent, parent's parent, and so on.

So you might have a classape, representing an abstract geometric shape. This might have
properties called andy giving the centre point of the shape, and methods csilbed andArea .

A circ le class might inherit fronshape, introducing further properties suchrasius . Equally,
a classolygon might also inherit fronshape, and further classesiangle andsSquare inherit
from Polygon . All of the classesircle , Polygon , Triangle andSquare arederived from
Shape. Because of the way inheritance works, they would all include the propedrety, and
the methodsmove andArea .

When a class inherits from another, you can specify that the definition of a given method of thi
parent (or the inial value of a property) is different in the child class. In our example, you woulc
need to supply a different definition of theea method for eCircle and asquare . This is known
asoverriding the method.

Definition of theArea method in thetircle class:

hTgCtgc
]3_"T"g"*G3+06tcfkwu, 4
h

Definition of theArea method in thesquare class:

hTgCtgc
]3_"T"g"ukfgngpivij, 4

h

For classes defined in APLX, all methods can be overridden, and all methaai$uede that is to
say if methodA in a baseslass calls another methegdand the second metheds overridden in a
child class, then running methadn the child class will cause the overridden versios tf be
called, not the version @ defined in the parent. For example, if you are run@imgethod defined
in the base classhape, and that method callsea , the version ofrea which gets called will be
Circle.Area Or Square.Area as appropriate.

APLX uses an inheritance model knownsaggle inheritance This means that a child class can
bederived from only one parent (which may itself derive from another class, and so on).
However, a advancedeature known amixins allowsyour objects toncorporatefunctionality
from classe®ther than theiancestors, which is rather like multiple inheritariceeethe APL
Language Refrencemanual forfurther details.

Object References and Class References

When you create an object, i.e. an instance of a class (using the system fumrctothe explicit
result that is returned is hthe object itself, but eeferenceto the object. This reference is held
internally as just an index into a table of objects which APLX maintains in the workspace. If yo
assign the reference to another variable, the object itself is not copied; iystehadyve two
references to the same object. This is discussed in more detail below.

Of course, because APL is an array language, you can have arrays of object references, and
can embed object references in nested arrays along with other data. Fplegyan might have

Learning APL with APLX 145

an array containing references to hundredseofangle objects.

You can also have a reference to a class. This makes it possible for general functions to act o
classes without knowing in advance which class applies.

The Null object

As its name implies, thBlull object is a special case of an object, which has no properties and r
methods of its own (although System methods may apply to it). A reference to the Null object
displays in the special form:

[INULL OBJECT]
A reference to the Nuobject can arise for a number of different reasons:

If you have an array of object references, the prototype of the array is a reference to the Null
object. For example:

XGE" " TPGY" ATgevcping"Urjgtg"Vtkcping
VEC

[Rectangle] [Sphere] [Triang! e]
3H5HXGE

[NULL OBJECT]

An external call or System method may return a Null object, for example if you are looping
through a linked list of objects and reach the last one. And APLX may be forced to set an obje
reference to Null, because it is mmger valid. For example, this will happen if ySAVE a
workspace which contains a reference to an external object (e.g. a Java or .NET objeet). On r:
loading the workspace at a later date, the object reference is no longer valid since the externa
objed no longer exists.

Types of Property

When you define a class, you specify the names of the properties of that class, which can be 1
to hold data associated with the class. You can optionally spedéfaalt value for the property,
that is the value tich the property will have in a newbyreated instance of the class. You can als
specify that the property read-only, which means it is not possible to assign a new value to it.

Most properties armstance properties which means that each instanéeh® class has a
separate copy of the property (for example, thand Y-position of ashape). Occasionally,
however, it is useful to definecasswide property (known in some other languages asatic

or sharedproperty). This is a property whereetie is a single copy of the data, shared between a
instances. This is useful for cases such as keeping a unigue incrementing serial number (the |
invoice number, for example), or to define a constant (such as a text string to appear on all
invoices) br all members of the class.

Implementation note: APLX uses a 'createn-write' approach when you assign to an instance
property. This means that, if you have never changed the value of a property for a particular
instance since the instance was first mdathe value which is returned when you read the
property is the default value stored in the class definition. Thus, if you change the class definit
so that the property has a different default value, the change will immediately be reflected in a

Learning APL with APLX 146

instances of the class, unless the property has been modified for that instance.

Name scope, and Public versus Private members

The members of a class (i.e its properties and methods) can bepaithieror private. Public
members can be accessed from olgétshe class, whereas private members can only be accesse
from within methods defined in the class (or from desk calculator mode, if a method has been
interrupted because of an error or interrupt and the method is 81 tiséack). Private members
can aso be accessed by methods defined in a child (derived) class. If you are familiar with oth
object oriented languages such as C++ or Visual Basic, this means that private methods in AF
correspond to ‘protected’ methods in those languages.

Methods and mperties are, by default, public, just as in conventional APL variables referencec
a function are global. (You can make them private by using the class editor, or localising them
the class header using the del editor.)

If you want to access a publisember of an object from outside the class (i.e. not within a methc
of the class), then you uget notation to refer to it. This takes the form
ObjectReference.MemberName . For example, suppose you have a varialylect which is a
reference to an objeof classRrectangle . You could call thevove method and access tkeandy
properties for that object as follows:

o{tgev0Z"g§g"67
o{tgevO["g" 9:
myrect.Move 17 6
myrect.X

62
myrect.Y

84

Within the methods of the class itself, ydon't normally need to use dot notation. This is becaus
the search order for symbols encountered when executing a method is as follows:
First, APLX looks to see if the symbol refers to a member defined in the class of the ob

If not, it looks to sed the member is defined in the parent class (if any), iterating througt
each of the ancestors in turn.

1 Ifitis not found in any of the ancestors, it then looks in the local variables of the metho
Finally, it looks in the global symbol table.

Thus, a snple implementation of thkove method above (defined in tisgape class from which
Rectangle derives) might be something like this:

h" Ogqxg" D
]3_""6"0Ogxg"ujcrg"d{"cogwpv"D"urgekhkgf"cu"ejcpig"
] 4 *Z"[+"g"*Z.[+-D

Learning APL with APLX 147

Canonical Representationof a Class

The canonical (text) representation of a class is returngdegyn exactly the same way as applies
to ordinary APL functions and operators. The first line is the class header. This comprises the
name of the class, followed (if the class intsefrom another class) by a colon and the name of th
parent class. Any private members of the class (i.e. names which are local to the class) are th
listed, separated by semwlons. The header line ends with a left curly bracbaracter.

The propeties of the class are then listed, one per line. The name of the property is listed first.
has a default value, an assignment arrow follows, and then the transfer form of the expressior
which initializes the property. If the property is reaaly, two assignment arrows are used. If the
property is classvide (i.e. there is only a single copy shared between all instances in the
workspace), then the whole line is enclosed in curly braces.

Any methods then follow, delimited by del characters, and angagght curly brace ends the
definition.

For example:

TET")Ekt eng)
Circle : Shape {
radius
}v{rggg)ekteng)

hTgCtgc
T"g"*03+6tcfkwu, 4
h

}

As you would expect] H zan be used to turn the text form into a class definition in the
workspace. In practice, though, you'll normally tend to use the APLX Elissr, which shows
the class as a whole:

Learning APL with APLX 148

B editclEARWS: Class Girdle I T |

File Edit Attributes Tools Window Help

El- Methods Class Circle : Shape

. ‘- Area

= Properties |Methods in Circle:
‘. radius Area Function Public
Lo type

Methods inherited from Shape:
Move Function Public A Move shape by amount B

Properties in Circle:
radius R/W Instance Public
type R/0 Class Public

Properties inherited from Shape:
X R/W Instance Public
Y R/W Instance Public

Class last modified 14/05/2008 17:46:48

KB: Non-APL | Class [«] |] @

...or allows you to edit a specific method or property:

File Edit Attributes Tools Window Help

El-Methods [0] |ReArea
i [1] |Re(ol)xradius+2

KB:NonAPL |Fn: ReArea

You can also use the del editor, or you can edit individual methods or properties directly.

Learning APL with APLX 149

Constructors

As we saw earlier, eonstructor is a special type of method, which is rurt@natically when an
instance of a class is created using G t can be used to initialize the object, optionally using
parameters passedtae G ¥or example, you might use this mechanism to specify the initial
position of aRectangle o0bject.

For a usedefined class, a constructor is defined as a method which takes a right argument, ar
which has the same name as the class itself. Any arguments to the constructor can be provide
extra elements on the right argument af G When the constructor ismuthese extra elements are
passed as the right argument to the constructor. If there are no extra elements, an empty vect
passed as the right argument to the constructor.

For example, suppose the classice looks like this:

TimeStamp

Account

InvNumber
}Ugtkcn"g" 2

hKpxgkeg" D
6" Egqpuvtwevqgt"hgt"encuu"KpxgkegO0""D"ku"vjg"ceeqwp
Ceeqwpv"g"D
VkogUvcor"g"TVU
Ugtkcn"g"Ugtkcn- 3
KpxPwodgt"g" Ugtkcn
h
}

This is a class which has a constructor and four properties. One of the propgeries) is a
classwide property, which means it has only a single value shared between all instances of th
class.

When a new instance of this class is created, the constructor will be run. It will store the accol
number (passed as an argument t0Q ¥n the propertyaccount , and store the current time stamp
in the propertyrimeStamp . It will then increment the classide propertySerial (common to all
instances of this class), and store the result in the propexiymber . To see the properties, we
can useahe system methog F which summarizes the property values:

U"g" TPGY" Kpxqgkeg" 45755
UOTFU
Account=23533, TimeStamp=2007 10 11 15 47 34 848, InvNumber=1
V"g" TPGY" Kpxqgkeg" 89766
VOTFU
Account=67544, TimeStamp=2007 10 11 15 48 11 773, InvNumber=2

Where &aclass inherits from another class, the constructor which gets run automatically is that ¢
the class itself (if it has a constructor), or of the first ancestor class which has a constructor.
Normally, in a constructor, you will want to do some initiali@atspecific to the class itself, and
also call the constructor of the parent class (UsirgC T ¢ o\do any initialization which it and its
ancestors require. You can do this at any point in the constructor; there is no restriction on wh
you make this call to the parent's constructor; indeed, you don't have to call it at all if it is not

Learning APL with APLX 150

appropriate.

In APLX, a constructor is also a perfectly ordinary method; it can be called in the normal way |
one of the other methods in the class, or from outside (if it declared as Public). This can be us
for re- initializing an object.

Some objecbriented languages also include a special method catlegteuctor, which is called
just before the object is deleted. APLX uslefined classes do not have destructors. This means
that, if you need to release system resources (for example, closeraafia@base connection),
you need to call a method to do that explicitly before erasing the last reference to the internal
object. However, APLX will automatically take care of deleting all the properties of the object,
and releasing the memory back te thiorkspace.

Creating objects (instances of classes)

As we have seen, the system functjop Gig the principal means by which you create an object,
i.e. an instance of a class. The class can be either written in ARhtéamal or user-defined

class), or a builtn System class, or a class written in an external environment such as .Net, Ja
Ruby (anexternal class).T P Gereates a new instance of the class, runs any constructor definec
the class, and returns a reference to the new object as its explicit result.

The class is specified as the right argument (or first element of tHerglment). It can be
specified either as a class reference, or as a class name (i.e. a character vector). Any parame
be passed to trmonstructor of the class (the method which is run automatically when a class is
created) follow the class namereference.

If you specify the class by name, you also need to identify in the left argument the environmer
where the class exists, unless it is internal.

Creating instances of internal (userdefined) classes

Normally, you create an instance of a udefined class by passing the class reference directly as
the right argument (or first element of the right argument). For example, if you have a class ca
Invoice , you can create an instance of it by entering:

K"g" TPGY" Kpxqgkeg

What is really happenghere is that the symbmoloice refers to the class definition, and when it
is used in this way, it returnsraference to the class

Note that you can also pass the class name rather than a class reference. The following are
alternative ways of creatinan instance of a useefined class:

g)

Kpxagkeg)

Why do we need this alternative syntax? The reason is that you can specify an external class

(i.e. a class written in a different language, and existing outside the workspace). For this ¢afte,
argument specifies the external environment, and the right argument the class name. For exal

Learning APL with APLX 151

LCXCFCVG" §")lcxc)"TPGY")l cxcOwvknOFcvg)

We won't discuss external classes any further higrat is a whole subject in itself!

Object references ad object lifetimes

When you usg P Gty create a new object, that object persists until there are no more referenci
it in the workspace. It is then deleted immediately, if it is an internal or system object. If it is an
external object, such as antausce of a .Net class, the fact that there are no more references to
the APL workspace means that it available for deletion by the external environment (unless th
external environment itself has further references to the same object). Howevpicahdyternal
environments such as .Net, Java and Ruby, the actual deletion of the object may not occur un
later.

Consider this sequence, where we create an instance of an APLX clasgialepher which
has a propertyame

cC" g GY

g" TP R]]
COPcog"g")C

knquqgrjgt

uvgvng)
At this point, we have created a new instance of the class, and we have a single reference to |
the variablea. We now copy theeference(not the object itself) to a variabe

D" g" C
B.Name
Aristotle

We now have two references to the same object. So if we change a property of the object, the
change is visible through either referendkey refer to the same thing:

DOPcog"g")Uqgetcvgu)
A.Name

Socrates

Now we erase one of threferences:

)ERASE A

We still have a second reference to the object. The object will persist until we delete the last
reference to it:

B.Name
Socrates
JERASE B

At this point, there are no more references to the object left in the woekspad the object itself
is deleted.

It follows from this that, if you usg P Gtg create an object, and do not assign the result to a
variable, it will immediately be deleted again.

Learning APL with APLX 152

Using Classes without Instances

So far in this tutorial, we have concentrated on using objects as instances of classes. Howeve
classes can also ery useful in their own right, without the need to make instances of them.
There are two major reasons why you might want to define a class which can be used directly
defining constants, and keeping a namespace tidy.

Defining a set of constants
If you define a class with a set of readly properties, those properties can be used as a set of

constant values or 'enumerations'. For example, you might have a class called Messages, wh
holds all the messages which your application displays to the user:

Messages {
QwvQhOgoqt{gg)Vjgtg"ku"pgv"gpgwij"ogoqt{"vg"eqpvkp
CumOqfgnPcoggg) Gpvgt"vjg"pcog"qh"vjg" fgn)

Qr Eqorngvggg) Qrgtcvkqgp"Eqorngvg)

CumTgugvgg) Fg"{gw"ycpv"vg"tgugv"vjg"oqgfgnA)

...etc

}

You can then use this class in your application (withoutritato make an instance of it) to
encapsulate all the messages and refer to them by name:

hTgEj gemYU

]3_ """<Kh"TgTYC>OKPaHTGGaYU
[2] ShowError Messages.OutOfMemory
[3] :EndIf

h

This keeps all the messages together in one place, allows yefertoarthem by a name which is
easy to remember and is sdfcumenting, but does not pollute the global symbol space with
hundreds of APL variables.

Keeping namespaces tidy

In traditional APL systems, it often used to be the case that the number dffgtadisons was
very large. By placing related functions in a class, the workspace can be kept tidy, without hav
to resort to local or dynamic functions.

For example, in a statistical application, you might have a class

Average Which contained methodsif calculating many different types of average (mean, medial
mode, etc). As long as these methods do not write to any property of the class, there is no ne¢
make an instance of the class to run them; you can just run them using dot notation as
Average .Mean, Average.Median etcC.

Note that, in APLX classes, there is no-pletermined difference between a method which can
only be run inside an instance (sometimes known assé@nce method, and a method which

can be run as a class member without anmestdeing created (sometimes known atéc
method). The only difference is that, at run time, if a method writes to a property, an error will t

Learning APL with APLX 153

generated if there is no instance to write to.

Finding out more

There is a lot more to APLX classes beydinid simple introduction. To find out more, take a look
at the MicroAPL website and particularly the documéatv Features in Version 4vthich
includes a longer version of this tutorial.

http://www.microapl.co.uk/apl/APLXv4_Update_Reference.pdf

