

Application Note APLX-W-0402:

Interfacing to the World Wide Web using APLX for Windows

Introduction

This document describes how you can use APLX in conjunction with Microsoft’s Internet
Explorer and other Microsoft components to integrate World Wide Web access into your
APLX for Windows applications.

The techniques described in this document use the ActiveX/OCX and OLE Automation
features of APLX for Windows.

Displaying Web pages in your APLX windows

The first example we will look at allows you to display web pages in APLX windows. To do
this, you need a Microsoft OCX control called the ‘Microsoft Web Browser’ control. It is
very likely that you already have this installed on your Windows system, as it is part of
Internet Explorer. Let us start by creating a window in APLX, and placing an instance of the
Web Browser control inside the window:

 'W' ŒWI 'New' 'Window'
 'W.B' ŒWI 'New' 'Microsoft Web Browser' ('align' ¯1)

This creates a blank window, and on it is a web browser (also initially blank). The align
property is used to ensure that the browser fills the window if the user resizes it. If you get a
DOMAIN ERROR on the second of these instructions, it might be because the Web Browser
is not installed on your system.

Now let’s display a web page inside the window. (We assume here that you are already
connected to the internet). The Web Browser has a method called Navigate which will cause
it to display a URL:

 'W.B' ŒWI 'Navigate' 'www.microapl.co.uk/apl' 0 0 0 0

(Don’t worry about the additional arguments of four zeros). This causes the Web Browser
control to access MicroAPL’s web site, and display the requested page:

Note that, because we set the align property to ¯1, the web browser control fills the
window.

Of course, retrieving this page may take a little time, depending on the speed of your internet
access and the load on MicroAPL’s web server. The busy property tells you whether the
web browser is busy loading the page:

 'W.B' ŒWI 'busy'
0

This returns 1 if the control is busy, and 0 if it has finished loading. You can also arrange for
a callback function to run when the load is complete:

 'W.B' ŒWI 'onDocumentComplete' 'READY'

This will cause APLX to run the READY function when the page has successfully loaded and
displayed. (As with all APLX callbacks, the actual callback is run when you execute ŒWE).

There are many other properties and methods of the Web Browser control (you can find the
full documentation on Microsoft’s web site http://www.microsoft.com). Here are a few of
the most useful:

LocationName and LocationURL are read-only properties which return the page title
and URL of the currently-displayed page:

 'W.B' ŒWI 'LocationName'
APLX Version 2: The exciting cross-platform APL
 'W.B' ŒWI 'LocationURL'
http://www.microapl.co.uk/apl/

The silent property is a boolean which determines whether the control can display dialog
boxes. If set to 1, no dialogs will be displayed by the control.

http://www.microsoft.com/

The following methods take no arguments, and can be used to navigate through the history
list or to standard locations:

GoBack Navigates backward one item in the history list.
GoForward Navigates forward one item in the history list.
GoHome Navigates to the current home or start page.
GoSearch Navigates to the current search page.

The Refresh method causes the current page to be reloaded.

Finally, there are several callbacks you can set in addition to onDocumentComplete
described above. The callback onNavigateError is the most important of these; it fires
when an error occurs during a page load.

Retrieving the HTML content of a page

The above example shows how to display web pages in your APLX application. Sometimes,
however, you might want your APLX workspace to retrieve information from a web site
without displaying the page. For example, you might want to retrieve the latest currency
exchange rates from a web page provided by your bank.

One way of doing this is to pick up the raw HTML which the browser uses to display the
page, and parse this to extract the information you want. You can do this using a Microsoft
Scripting control:

 'HTTP' ŒWI 'New' 'Microsoft.XMLHTTP'

This creates an object which encapsulates the HTTP protocol used by the World Wide Web.

 'HTTP' ŒWI 'Properties'
 children class data events methods name opened progid properties self
tie xreadyState xresponseBody xresponseStream xresponseText
xresponseXML xstatus xstatusText

 'HTTP' ŒWI 'Methods'
 Close Create Delete New Open Send Set Trigger Valueof Xabort
 XgetAllResponseHeaders XgetResponseHeader Xopen Xsend XsetRequestHeader

In this example, we’ll extract MicroAPL’s telephone number from the ‘Contact Details’ page
of the MicroAPL website. To access the content of a page, we first need to open the URL:

 'HTTP' ŒWI 'XOpen' 'GET' 'http://www.microapl.co.uk/contact.html' 0

This indicates that we want to open the named web page using the HTTP ‘GET’ protocol
(Note: we have to use the full name XOpen here because of the name clash with the built-in
APLX method Open).

Now we send the request:

 'HTTP' ŒWI 'XSend'

(Again we have to use the full method name so as not to clash with the built-in Send
method).

We can tell whether it is successful by reading back the status:

 'HTTP' ŒWI 'xstatusText'
OK

It looks good. Let’s retrieve the HTML of the page:

 PAGE „ 'HTTP' ŒWI 'xresponseText'
 ½PAGE
4967
 60†PAGE
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN

Now we’ve got the page contents, we can clean up by deleting the object we created:

 'HTTP' ŒWI 'Delete'

Finally, we need to extract the information we want from the HTML text. This step depends
on the page layout remaining substantially unchanged; the MicroAPL contact page has our
telephone number preceded by the word ‘Telephone’ and followed by the HTML element

 (meaning line break). Using this knowledge of the page layout, we can extract the
telephone number:

 (¯1+X¼'<')†X„(9+ŒSS PAGE 'Telephone')‡PAGE
(+44) 1825 768050

For more information

To learn more about the OCX/ActiveX interface of APLX for Windows, look at the chapter
OCX/ActiveX Controls and OLE Automation in the APLX Help pages or the APLX GUI
Programming Manual.

Full documentation on the Microsoft components described in this note can be found on the
Microsoft web site or in the Visual Basic help files.

Copyright © 2004 MicroAPL Ltd. MicroAPL and APLX are trademarks of MicroAPL Ltd. Microsoft and Windows are registered
trademarks of Microsoft Corporation.

