
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APLX Language Manual 
 

Version 5.0 
 

 

 

 

 

 

 

 
 

 

 

 

 

APLX 



 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 1985-2009 MicroAPL Ltd. All rights reserved worldwide.  

 

APLX, APL.68000 and MicroAPL are trademarks of MicroAPL Ltd. All other trademarks 

acknowledged.  

 

APLX is a proprietary product of MicroAPL Ltd, and its use is subject to the license agreement in 

force. Unauthorized copying or use of APLX is illegal.  

 

MicroAPL Ltd makes no warranties in respect of the suitability of APLX for any particular purpose, 

and accepts no liability for any loss arising out of the use of APLX or arising from the information 

contained in this manual. 

 

MicroAPL welcomes your comments and suggestions.   

Please visit our website: http://www.microapl.co.uk/apl 

 

 

Version 5.0 June 2009 

 





APLX Language Manual  5 

  

 

 

 

Contents 

 
Section 1: APL Fundamentals 13 

The Workspace 15 

Data 19 

Array type & prototype 21 

Display of arrays 25 

Vector Notation 27 

Primitive Functions 28 

Primitive Operators 37 

Axis Operator 41 

Formatting 42 

Names 44 

Specification (Assignment) 45 

Multiple specification 46 

Selective specification 47 

Binding strengths 51 

Bracket indexing 53 

User-defined Functions 55 

User-defined Operators 59 

Classes and Objects 61 

Mixins 71 

Branching and labels 75 

Control Structures 77 

System commands 83 

System Functions and Variables 84 

System Methods 85 

System Classes 86 

Files and Databases 87 

Section 2: APL Primitives 89 

+ Conjugate 91 

+ Add 91 

-  Negate 92 

-  Subtract 92 

× Sign of 93 

× Multiply  93 

÷ Reciprocal 94 

÷ Divide 94 

Ľ Ceiling 95 

Ľ Greater of 96 

ľ Floor 96 

ľ Lesser of 98 

|  Absolute value 99 

|  Residue 99 

Ŝ Index generator 100 

Ŝ Index of 100 

? Roll 101 



APLX Language Manual  6 

  

? Deal 102 

*  Exponential 102 

*  To the power of 103 

œ Natural log 103 

œ Log to the base 104 

ű Pi times 104 

ű Circular and Hyperbolic functions 105 

!  Factorial 106 

!  Binomial 106 

Ł Matrix inverse 107 

Ł Matrix divide 108 

< Less than 109 

ĳ Less than or equal 109 

= Equal 110 

Ĵ Greater than or equal 111 

> Greater than 112 

İ Not equal 112 

ı Depth 113 

ı Match 113 

Ĳ Not Match 114 

Ĩ Enlist 115 

Ĩ Membership 116 

ş Find 117 

Į Unique 118 

Į Union 118 

ĭ Intersection 119 

~ Not 120 

~ Without 120 

Ĭ Or 121 

^  And 121 

Ś Nor 122 

ś Nand 122 

ŝ Shape of 123 

ŝ Reshape 123 

,  Ravel 125 

,  Catenate, Laminate 127 

ŗ 1st axis catenate 129 

Ń Reverse 129 

Ń Rotate 130 

ķ 1st axis rotate 130 

ŉ Transpose 131 

Ĥ First 132 

Ĥ Take 133 

Ħ Drop 135 

ĵ Enclose 136 

ĵ Partition (with axis) 137 

Ķ Disclose 139 

Ķ Pick 141 

ŀ Index 142 

Ŋ Grade up 143 

ō Grade down 146 



APLX Language Manual  7 

  

ĺ Encode 149 

Ļ Decode 150 

š Picture format 151 

Ŏ Format 154 

Ŏ Format by specification 154 

Ŏ Format by example 156 

ŋ Execute 160 

Ĺ Stop 161 

Ĺ Left 161 

ĸ Pass 162 

ĸ Right 162 

Ţ Evaluated input 163 

Ţ Output with newline 163 

Œ Character input 164 

Œ Bare output 164 

Reduction 165 

ń 1st axis reduction 167 

\ Scan 168 

Ņ 1st axis scan 169 

Compression, Replication 169 

ń 1st axis Compress, Replicate 171 

\ Expand 172 

Ņ 1st axis expand 173 

. Inner product 173 

ĩ0 Outer product 175 

¨  Each 176 

[  ]  Axis 177 

ř Zilde 180 

ļ Statement Separator 180 

ħ Line Editor 181 

Ř Lock 183 

Section 3: Errors 185 

Overview of error handling and the State Indicator 187 

Error trapping using :Try..:EndTry  192 

Error Trapping *ŢGC,  ŢGE+ 194 

Error Trapping *ŢGTZ+ 196 

Error Codes *ŢGV+ 199 

Error Codes *ŢNGT+ 200 

Error Messages 201 

Section 4: Component File Systems 205 

Ň"based File System 207 

Ň File read 211 

ň File write 214 

Ō File hold 215 

ŏ File drop 217 

ŢHzzz Component File System 219 

Section 5: Native File Functions 223 

APLX Native File Support 225 

Native File System Functions 227 

 

 



APLX Language Manual  8 

  

Section 6: System Commands 229 

)CLASSES (first (last)) 231 

)CLEAR (wssize) 231 

)CONTINUE 232 

)COPY (lib) name (:pass) (name(s) 232 

)CS (number) 234 

)DIGITS  number 234 

)DISPLAY  name 235 

)DROP (lib) name (:pass) 235 

)EDIT  (type) name 236 

)ERASE name(s) 237 

)FNS (first (last)) 238 

)GROUP name(s) 239 

) GRP name(s) 239 

)GRPS (first (last)) 239 

)HOST (command) 240 

)IN  (lib) filename (name(s)) 241 

)LIB  (lib) 242 

)LOAD (lib) name (:pass) 243 

)NMS (first (last)) 246 

)OPS (first (last)) 247 

)OFF 247 

)ORIGIN  (number) 247 

)OUT (lib) filename (name(s)) 248 

)PCOPY (lib) name (:pass) name(s) 250 

)REPARENT class parent 250 

)RESET (number) 251 

)SAVE (lib) (name (:pass)) 251 

)SCOPY (lib) name (:pass) (name(s)) 252 

)SDROP (lib) name (:pass) 252 

)SI  (number) 252 

)SIC  (number) 253 

)SICL  (number) 253 

)SINL  254 

)SIS  (number) 254 

)SIV  (number) or )SINL  (number) 255 

)SLOAD (lib) name (:pass) 255 

)SPCOPY (lib) name (name(s)) 255 

)SSAVE (lib) (name (:pass)) 256 

)SWSID (lib) name (:pass) 256 

)SYMBOLS (number) 256 

)TABS (number) 257 

)TIME  257 

)VARS (first (last)) 258 

)WIDTH (number) 258 

)WSID (lib) (name (:pass)) 259 

)XLOAD (lib) (name (:pass)) 260 

Section 7: System Functions & Variables 261 

ŢC Alphabet, Upper Case 263 

Ţc Alphabet, Lower Case 263 

ŢCH Atomic Function 263 



APLX Language Manual  9 

  

ŢCK Account Information 264 

ŢCV Object Attributes 264 

ŢCX Atomic Vector 266 

ŢD Backspace 266 

ŢDQZ Vector to/from Matrix 266 

ŢE Control Characters 268 

ŢECNN Call external static method 268 

ŢEE Console Control 269 

ŢEJCTV Draw Chart of Data 272 

ŢEN Current Line 275 

ŢENCUU Class hierarchy for object or class 275 

ŢENCUUGU References to user-defined and external classes 276 

ŢEQPH Configure APL 276 

ŢET Canonical Representation 277 

ŢEU Compatibility Setting 279 

ŢEV Comparison Tolerance 280 

ŢF Digits 282 

ŢFDT Delimited Blank Removal 282 

ŢFKURNC[ Display Array Structure 282 

ŢFN Delay 286 

ŢFT Data Representation 286 

ŢGC Execute Alternate 290 

ŢGE Execute Controlled 291 

ŢGFKV Edit fn/op/var 292 

ŢGO Error Matrix 292 

ŢGTO Error Message Vector 293 

ŢGTU Error signalling 293 

ŢGTZ Error trapping 295 

ŢGU Error simulate 295 

ŢGV Error Type 297 

ŢGX Event Record 297 

ŢGXC Event Arguments 298 

ŢGXCN Evaluate external expression 299 

ŢGXP Event Name 300 

ŢGXV Event Target 300 

ŢGZ Expunge 300 

ŢGZRQTV Export APL array to file in specified format 301 

ŢHCRRGPF Append component to file 305 

ŢHE Format Control 306 

ŢHETGCVG Create a new component file 306 

ŢHEUK\G Read component size information 308 

ŢHFGNGVG Delete component from a file 309 

ŢHFTQR Drop components from start or end of file 309 

ŢHFWR Duplicate component file, reclaiming wasted space 310 

ŢHGTCUG Erase component file 310 

ŢHGTTQT Return operating-system error 311 

ŢHJQNF Hold/Release component files for exclusive access 311 

ŢHK Convert formatted input 312 

ŢHNKD Return names of component files in directory 313 

ŢHOV Formatting Function 313 

ŢHPCOGU  Return names of currently-tied files 319 



APLX Language Manual  10 

  

ŢHPWOU  Return tie numbers in use 319 

ŢHTFCE  Read component-file access matrix 320 

ŢHTFEK  Read component information 320 

ŢHTFHK  Read file information 321 

ŢHTGCF  Read component from a file 321 

ŢHTGPCOG  Rename component file 322 

ŢHTGRNCEG  Replace existing component 322 

ŢHTGUK\G  Set maximum file size 323 

ŢHUK\G  Read file-size and component-range information 323 

ŢHUVCE  Set component-file access matrix 324 

ŢHUVKG  Open (tie) an existing file for shared use 325 

ŢHVKG  Open (tie) an existing file for exclusive use 326 

ŢHWPVKG Untie component file(s) 327 

ŢHYTKVG Append, replace or insert component 328 

ŢHZ Fix function/operator/class 330 

ŢJE Hard Copy 331 

ŢIGVENCUU Get reference to named class 332 

ŢJQUV Command to Host 333 

ŢK Idle Character 334 

ŢKE Insert into Class 335 

ŢKF ID Number 337 

ŢKORQTV Import data from file in specified format 337 

ŢKPSTANCES Instances of a Class or Descendants 340 

ŢKQ Index Origin 340 

ŢN Linefeed Character 341 

ŢNE Line Counter 341 

ŢNG Last Exception 341 

ŢNGT Line Error Report 343 

ŢNKD Return names of files in directory 343 

ŢNZ Latent Expression 344 

ŢO Months 344 

ŢOE Missing Character 345 

ŢOQWPV Allocate Libraries 345 

ŢP Null Character 347 

ŢPC Define External Function 347 

ŢPCRRGPF Append data to a native file 357 

ŢPE Name Classification 357 

ŢPETGCVG Create a new native file and tie it 358 

ŢPGTCUG Erase a native file 359 

ŢPGTTQT Return an error message describing the last file error 360 

ŢPGY Create new instance of class 360 

ŢPN Name List 365 

ŢPNQEM Lock/Unlock a file or a segment of a file 366 

ŢPPCOGU Return file names of all tied files 368 

ŢPPWOU Return tie numbers of all tied files 368 

ŢPTGCF Read data from a native file 368 

ŢPTGPCOG Change the name of a native file 371 

ŢPTGRNCEG Replace data in a native file 372 

ŢPTGUK\G Alter the size of a native file 372 

ŢPUK\G Return file size information 373 

ŢPVKG Open an existing file and associate it with a tie number 373 



APLX Language Manual  11 

  

ŢPV[RG Get/Set the file type/creator for a MacOS file 374 

ŢPWNN Return reference to null object 375 

ŢPWPVKG Untie native file(s) 375 

ŢPYTKVG Write data to a native file 375 

ŢQX Overlay 377 

ŢRHMG[ Set up Function keys 378 

ŢRR Print Precision 379 

ŢRT Prompt Replacement 380 

ŢRTQHKNG"Performance Profiling 380 

ŢRY Print Width 383 

ŢT Carriage Return 384 

ŢTGENCUU Change class of objects 384 

ŢTGRCTGPV Change parent of user-defined class 385 

ŢTN Random Link 386 

ŢUGVWR Set up external environment 386 

.Net 386 

Java 388 

Ruby 389 

ŢUK State Indicator 391 

ŢUSN Interface to External Database 391 

ŢUU String Search/Replace 409 

Using modifier flags to specify how the search should be carried out 415 

Technical considerations 417 

ŢUVQR Stop List 418 

ŢUXE Shared Variable Control 418 

ŢUXQ Shared Variable Offer 419 

ŢUXS Shared Variable Query 420 

ŢUXT Shared Variable Retract 420 

ŢU[OD Symbol Table Used/Total Count 420 

ŢV Tab Character 421 

ŢVE and ŢVEzz Terminal Control Characters 421 

ŢVH Transfer Form 421 

ŢVJKU Reference to current object 423 

ŢVKOG Time/Date Text 423 

ŢVT Translate Text to/from External 424 

ŢVU Timestamp 424 

ŢVV Terminal Type 424 

ŢVTCEG Trace 425 

ŢWEU Convert text to/from Unicode 425 

ŢWN User Load 426 

ŢXK Verify formatted input 426 

ŢY Weekdays 427 

ŢYC Workspace Available 427 

ŢYCTI Argument to event callback function 427 

ŢYG Wait for Event 428 

ŢYK Windowing Interface 429 

ŢYUGNH Object Name 431 

ŢYUUK\G Size of Workspace 432 

ŢZON Convert to/from XML 432 

 

 



APLX Language Manual  12 

  

Section 8: System Methods 441 

ŢDCUG Base (parent) class 443 

ŢEJKNFTGP Child classes 444 

ŢENCUUPCOG Name of class 445 

ŢENCUUTGH Reference to object's class 445 

ŢENQPG Create copies of object 446 

ŢFGUE Describe public members 449 

ŢFH Set display form 451 

ŢFU Display summary of object 452 

ŢJCPFNG Handle to object 454 

ŢOGODGTU Details of class members 454 

ŢOKZKP"Mix another class into object 455 

ŢOKZKPU Return list of mixins 456 

ŢPN Names of public members 457 

ŢQKF Object ID 459 

ŢRCTGPV Base (parent) class 459 

ŢTGH Force reference result 460 

ŢUVCVG Property names and values 461 

ŢWPOKZ Remove mixins from object 462 

ŢXCN Force value result 463 

Section 9: Interfacing to other languages 465 

Overview of interfacing to other languages 467 

Using External Classes 469 

Interfacing to .Net 475 

Interfacing to Java 483 

Interfacing to Ruby 486 

Interfacing to the R statistical language 490 

Custom interfaces 500 

Auxiliary Processors 501 

Section 10: Performance Profiling 511 

Performance Profiling 513 

Appendix: APLX Character Set and Unicode Mapping 518 

APLX Character set 519 

 



APLX Language Manual  13 

 

Section 1: APL Fundamentals 

 
 





APLX Language Manual  15 

 

The Workspace 

 
 

The workspace is a fundamental concept in APL. It enables you to develop a project as a series of 

small pieces of program logic. These are organized into functions, operators and classes, as described 

below. (For brevity, we sometimes use the term 'function' in this discussion to refer to all three of 

these). All of these co-exist in the workspace and are instantly available for inspection, amendment, 
and execution - or for use on another project. 

Data of all shapes and sizes (stored in variables) can inhabit the same workspace as the functions, and 

is also instantly available, which greatly facilitates testing. And, of course, the entire collection can be 
saved on to disk by a single command or menu option. 

Functions, operators, and classes can quickly be constructed, tested, strung together in various 

combinations, and amended or discarded. Most importantly, it is very easy in APL to create test data 

(including large arrays), for trying out your functions as you develop them. Unlike many traditional 

programming environments, you do not need to compile and run an entire application just to test a 

small change you have made - you can test and experiment with individual functions in your 

workspace. This makes the workspace an ideal prototyping area for 'agile development', and helps 
explain why APL is sometimes referred to as a 'tool of thought'. 

Functions, Operators, Classes 

In APL, the term function is used for a basic program module. Functions can either be built-in to the 

APL interpreter (for example, the + function which does addition), or defined by the user as a series of 

lines of APL code. Functions can take 0, 1 or 2 arguments. For example, when used for addition + 

takes two arguments (a left argument and a right argument). The arguments to functions are always 

data (APL arrays). Functions usually act on whole arrays without need for explicit program loops. 

An operator is like a function in that it takes data arguments, but it also takes either one or two 

operands which can themselves be functions. One of the commonly-used built-in operators is Each 

(¨ ). This takes any function as an operand, and applies it to each element of the supplied data 

arguments. Just as you can define your own functions as a series of lines of APL code, you can also 
define your own operators. 

A class is a collection of functions and possibly operators (together known as methods), together with 

data (placed in named properties of the class). A class acts as a template from which you can create 

objects (instances of classes), each of which can have its own copy of the class data, but which shares 

the methods with all other instances of the class. A class can be used to encapsulate the behavior of a 
specific part of your application. 

Workspace size 

The workspace size is stated on the screen when you start an APL session. Depending on the 
workspace size, it is either expressed in 'KB' 'MB' or 'GB', where: 



APLX Language Manual  16 

  

¶ One 'GB' represents a Gigabyte, approximately a thousand million bytes  

¶ One 'MB' represents a Megabyte, approximately a million bytes  

¶ One 'KB' represents a Kilobyte, approximately a thousand bytes, and  

¶ One byte is (again approximately) the amount of computer memory used to store a single 

character.  

During the session you can find out how much space is free by using the system function ŢYC, which 
stands for Workspace Available. 

The maximum size of the workspace depends on how much memory (RAM) you have on your 
system, and the amount of disk space reserved for virtual memory. 

Managing the workspace 

There are system commands for enquiring about the workspace and doing operations that affect it 

internally. The most useful of these are mentioned below under the heading 'Internal workspace 

commands'. (Note that, to distinguish them from names in your program, the names of system 
commands start with a right parenthesis.) 

There are also system commands for copying the current workspace to disk, reloading it into memory 

and doing other similar operations. These are mentioned below under the heading 'External workspace 

commands'. You can either type these commands directly, or (on most versions of APLX) use the File 

menu to load and save workspaces. 

Internal workspace commands 

At the start of a session, you're given an empty workspace which has the name CLEAR WS. At any time 

you can return to this state by issuing the system command )CLEAR. Any variables or functions you 

have set up in the workspace are wiped out by this command, so if you want to keep them, you should 

first save the workspace on to a disk. 

You can get a list of the variable names in the workspace by using the )VARS command. The command 

)FNS produces the equivalent list of user-defined functions, and the command )OPS gives the list of 
user-defined operators. The command )CLASSES lists the classes you have defined. 

If you don't want to clear the entire workspace, you can get rid of individual items by using the 
command )ERASE followed by the name(s) of the items(s) you want to remove. 



APLX Language Manual  17 

  

External workspace commands 

Note: In practice, you will often use menus to load and save workspaces, rather than typing the system 

commands described below. For example, rather than typing )LOAD, you can use the File menu to 
open a dialog which allows you to select the workspace you want to load. 

A collection of workspaces on a disk, or other storage medium, is a library. (It corresponds to a 

directory or folder in the host operating system). Unless you change the library number associated 

with each device, the device listed first when you type ŢOQWPV")) (see below under 'System 

Functions') is Library 0, the next one is Library 1, and so on up to Library 9. (In most versions of 

APLX, you can set up these libraries using the Preferences item of the Tools or APLX menu). Most of 

the commands in this section can include the number (0, 1 or whatever) to indicate which library the 
command applies to. If no library number is given, APL assumes that library 0 is intended. 

Library 10 is a special case. It contains the utility workspaces and examples supplied as part of the 
APLX installation. 

The use of library numbers is a convenience which helps you organize your workspaces on disk, and 

saves you from having to enter long path names when referring to them. But if you prefer, you can 
enter the full path name to a workspace when you load and save it (or use the File menu). 

To find out the names of the workspaces which you have already stored in library 0, use the command 
)LIB . To list the workspaces supplied with APLX, use: )LIB 10 . 

You can save the current workspace by simply issuing the command: )SAVE. Everything in the 

workspace is copied on to the disk and the saved workspace is given the same name as the workspace 

in memory. If you want the saved version to have a different name, you specify the (new) name 
immediately after the )SAVE (e.g. )SAVE NEWNAME). 

The )LOAD command followed by the name of a workspace brings the named workspace back into 

memory. The workspace already in memory is overwritten. 

If you want to bring specific functions or variables into memory, but don't want to overwrite the 
workspace already there, you can use the )COPY command. 

You can get rid of a workspace on a disk by using the )DROP command. 

System variables 

What goes on in the workspace is conditioned to some extent by the current settings of system 
variables. These are built-in variables, whose names begin with 'Ţ'. 

Some system variables you may occasionally want to enquire about or (in some cases) alter are: 

¶ ŢYC   Workspace available: the number of bytes available for use in the workspace. 



APLX Language Manual  18 

  

¶ ŢRR   Print precision: the number of digits displayed in numeric output. The default setting is 

10. 

¶ ŢRY   Print width: the number of characters to the line. On most systems, the default setting is 
80 (or the size of the visible window). 

¶ ŢNZ   Latent Expression: the expression or user-defined function in this variable is executed 

when the workspace is loaded. You might, for example, write a function which set things up 

for you when you started a session and assign its name to ŢNZ. Unless you assign a value to 
ŢNZ, it's empty. 

You can find out the value of a system variable by typing its name. For example, to see the setting of 

ŢRR, the variable which determines how many digits are displayed in numeric output, you would type: 

 
      ŢPP 
10 

You can reset the value of most system variables by using the symbol ģ". For example, to change ŢRR 
from its normal value of 10, to a value of 6, you would type: 

 
      ŢRR"ģ"8 

System functions 

We've been discussing system variables. System functions can also affect your working environment. 

The system function ŢOQWPV, for example, is used to associate operating-system directories with the 

library identifiers you use in your programs. 

Other system functions duplicate tasks performed by system commands. For example, the system 

function ŢPN which stands for name list, can be used to produce a list of variables, functions, 

operators, or classes, and the system function ŢGZ can be used to expunge individual APL objects. 
Similar jobs are done by the system commands )VARS )FNS )OPS )CLASSES , and )ERASE. 

The difference between system functions and system commands is that system functions are designed 

for use in user-defined functions, and behave like other functions in that they return results which can 

be used in APL statements. System commands, on the other hand, are primarily designed for direct 

execution and can only be included in a user-defined function if quoted as the text argument to the 
function ŋ (execute - a function which causes the expression quoted to be executed.) 

There are many System Functions and Variables available in APLX. They have other purposes besides 

control of the workspace; for example they are used for reading and writing files, and for accessing 
databases, and for doing string-searches using regular expressions. 



APLX Language Manual  19 

  

Data 

 
 

A data item is composed of numbers, characters, or references to objects. It can be a constant or a 
variable: 

 
             231           (constant)  
             NUM           (variable)  

System variables are a special class of variable. Their names start with a Ţ0 Normally their initial 

values are set by the system, eg: 

 
             ŢPP 

Data in APL is arranged in arrays. An array is a collection of data with a number of dimensions (rank) 

and a number of elements in each dimension (shape). Some or all of the elements may themselves be 
arrays, making the array a nested array with a third property, depth. 

The commonest ranks of array are given special names: 

 
              Rank       Name        Dimensions  
 
                0        Scalar      None   (one element on ly)  
                1        Vector      1      (elements)  
                2        Matrix      2      (rows and columns)  
                3                    3      (planes, rows and columns)  
                4                    4      (blocks,planes,rows  and columns)  

Arrays of up to 63 dimensions are allowed in APLX. 

The 'depth' of an array is a measure of the degree of nesting in the array. A simple (non-nested) scalar 

will have a depth of 0 and an array whose elements are all scalars (character or numeric) is known as a 

'simple' array and has a depth of 1. In a nested array, the depth of the array is defined as the depth of 

the deepest element. The following table shows the way in which the depth of an array may be 
calculated: 

 
             Depth                  Description  
 
               0                     Simple scalar  
               1                     Simple array  
               2                     Deepest element in the array is of depth 1  
               3                     Deepest element  in the array is of depth 2  
               .  
               n                     Deepest element in the array is of depth n - 1 

Character Data 

Anything enclosed between either single or double quotes is treated as character data (you must use 

the same type of quote mark to end the string as you use to begin it). This includes the digits, 0 to 9, 

and any of the symbols on the keyboard. It also includes the invisible character, space. If you have 



APLX Language Manual  20 

  

used single quotes to delimit the string, then to include a single quote itself in the character data, type 

it where it is required, followed immediately by another single quote. (Similarly for double quotes). 

Alternatively, if you use single-quotes to delimit a string, you can place double-quotes directly in the 

string without doubling them up, and vice-versa. The single- or double-quote characters used to 
surround character data are not displayed by APLX. 

 
             CNHģ)CDE"- += 123'   (The characters in quotes are put in ALF)  
             ALF                 (When  displayed, the quotes are dropped)  
       ABC - += 123  
 
             ŝCNH""""""""""""""""*ŝ"ku"wugf"vq"cum"vjg"uk|g"qh"CNH0 
       11                         It contains 11 characters including spaces)  
 
             Cģ)FQP))V"YCNM)"""""*)"gpvgtgf"cu")) 
             A 
       DON'T WALK                 Only one is displayed)  
 
             Cģ$FQP)V"YCNM$""""""*Cnvgtpcvkxg"wukpi"fqwdng- quotes.  
             A 
       DON'T WALK                 The result is the same)  
 
             Dģ")))VKU"VTWG")""""*)"cu"vjg"hkrst character of a text string)  
             B 
      'TIS TRUE  
 
             Dģ"$)VKU"VTWG"$"""""*Cnvgtpcvkxg"wukpi"fqwdng- quotes)  
             B 
       'TIS TRUE  
 
             PWOģ)723)"""""""""""*Fkikvu"kpenwfgf"kp"ejctcevgt"fcvc"ctg 
             NUM+10               characters rather than numbers and  
       DOMAIN ERROR               can't be used in arithmetic)  
 
             VCDNGģ5"8ŝ$[GU"PQ$ 
       YES NO                    (Character data can be formed into  
       YES NO                     matrices.  The six characters YES NO  
       YES NO                     are formed into a matrix of 3 rows and  
                                  6 columns)  



APLX Language Manual  21 

  

Array type & prototype  

 
 

Any array has a 'type' which is zero for numeric elements and the blank character for character 

elements. The type of the first element in an array is known as the 'prototype' of the array. The 

prototype of an array is used in two important areas. Firstly, the prototype of an array is used to 

determine the structure of an empty array formed from that array. Secondly, the prototype of an array 

is used as a 'fill' element by those APL functions that can generate extra elements (for example Ĥ 
'take'). 

You can see the structure of an array, including its type and prototype, using the ŢFKURNC[ system 

function (or the )DISPLAY  system command). In desktop editions of APLX, you can also invoke a 

Display Window to show array structure, using the pop-up menu which appears when you right-click 

(or, under MacOS, click-and-hold) over a variable name. See the description of the ŢFKURNC[ system 
function for details of how the structure is shown.  

Empty arrays 

An empty array is one in which at least one of the dimensions is zero. For example, an empty vector is 

a vector of length 0. An array with four rows and zero columns is an empty matrix; it has shape ( 4 by 
0), but does not contain any data elements. 

A empty vector can most simply be made by one of the expressions shown below. Note that the 'type' 
of the resultant empty vector can be be numeric or character. 

 
             ŢDISPNC["Ŝ2"""""""""""""""""""ŢFKURNC[")) 
       0ķ0"""""""""""""""""""""""""""0ķ0 
       |0|                           | |  
       '~'                           ' - '  
       empty numeric vector          empty character vector  

The alternative expression 2ŝ is often used, and may again create either a numeric or character empty 

vector when used with the appropriate argument. (Higher dimensional empty arrays may be made by 
expressions of the form 0 4ŝ00 and so on -  see the entry for ŝ 'reshape'). 

 
             ŢDISPNC["2ŝ898""""""""""""""""ŢFKURNC["2ŝ)RGVGT) 
       0ķ0"""""""""""""""""""""""""""0ķ0 
       |0|                           | |  
       '~'                           ' - '  
       empty numeric vector          empty character vector  

An empty numeric vector can also be created using ř (Zilde), a primitive constant, which is equivalent 
to Ŝ2 or 2ŝ2. 

 
             Zģř 
             ŝX 
       0 
             Zı2ŝ2 
       1 
  



APLX Language Manual  22 

  

            ŢFKURNC["ř""""""ő"Gorv{"pwogtke"xgevqt 
       ťķŦ 
       Ť2Ť 
       ŧ¡Ũ 

Prototypes of nested arrays  

More complex empty arrays result when a nested array is used to generate the empty array. In each 

case, it is the 'prototype' (derived from the first element of the original array) that dictates the type and 
structure of the resultant empty array. 

 
             ŢFKURNC[")CDE)"*Ŝ5+""""""""""ŢFKURNC["2ŝ)CDE)"*Ŝ5+ 
       0ĥ--------------- 0""""""""""""0ķ------ .  
       ~"0ĥ-- 0""0ĥ---- 0"~""""""""""""~"0ĥ-- . |  
       | |ABC|  |1 2 3| |            | |   | |  
       | ' --- '  '~ ---- ' |            | ' --- ' |  
       )Ĩ-------- ------- )"""""""""""")Ĩ------ '  

The original array (on the left) is a two element nested array whose first element is itself a character 

vector. The resultant empty vector (the expression on the right) is an empty vector which is itself a 

nested array with the prototype a length 3 character vector. 

 
             ŢFKURNC["*4"4ŝŜ6+")CDE)"""""""ŢFKURNC["2ŝ*4"4ŝŜ6+")CDE) 
       0ĥ-------------- 0"""""""""""""0ķ------- .  
       ~"0ĥ--- 0""0ĥ-- 0"~"""""""""""""~"0ĥ--- . |  
       ~"Ħ"3"4~""~CDE~"~"""""""""""""~"Ħ"2"2~"~ 
       | | 3 4|  ' --- ' |             | | 0 0| |  
       | '~ --- '        |             | '~ --- ' |  
       )Ĩ-------------- )""""""""""""")Ĩ------- '  

Similar considerations apply above, except that the type of the first element of the original array is 
numeric, or even, as below, when the first element is mixed. 

 
         ŢFKURNC["*4"4ŝ"3")M)"4")L)"+"*Ŝ6+""""""ŢFKURNC["2ŝ*4"4ŝ"3")M)"4")L)+"*Ŝ6+ 
   0ĥ------------------- 0"""""""""""""""""0ķ-------- .  
   ~"0ĥ---- 0""0ĥ------ 0"~"""""""""""""""""~"0ĥ---- . |  
   ~"Ħ"3"M"~  ~3"4"5"6~"~"""""""""""""""""~"Ħ"2"""~"~ 
   | | 2 J |  '~ ------ ' |                 | | 0   | |  
   | '+ ---- '            |                 | '+ ---- ' |  
   )Ĩ------------------- )""""""""""""""""")Ĩ-------- '  

The prototype concept can be used to display the 'type' of an array. In the example below, the array is 

first enclosed *ĵ+ to form a scalar and an empty vector made from the scalar *2ŝ+0 Finally the Ĥ 

('first') function removes the additional level of nesting introduced. 

 
             ŢDISPLAY VAR 
       0ĥ----------------------------------- .  
       ~"0ĥ------------------------ 0""0ĥ-- . |  
       ~"~"0ĥ---- 0""0ĥ----------- . |  |ABC| |  
       ~"~"Ħ"3"C"~""~"0ĥ-- .      | |  ' --- ' |  
       | | | B 2 |  | |1 2|   7  | |        |  
       | | '+ ---- '  | '~ -- '      | |        |  
       ~"~"""""""""")Ĩ----------- ' |        |  
       ~")Ĩ------------------------ '        |  
       )Ĩ----------------------------------- '  
 



APLX Language Manual  23 

  

             ŢFKURNC["Ĥ2ŝĵXCT 
       0ĥ----------------------------------- .  
       ~"0ĥ------------------- ----- 0""0ĥ-- . |  
       ~"~"0ĥ---- 0""0ĥ----------- . |  |   | |  
       ~"~"Ħ"2"""~""~"0ĥ-- .      | |  ' --- ' |  
       | | |   0 |  | |0 0|   0  | |        |  
       | | '+ ---- '  | '~ -- '      | |        |  
       ~"~"""""""""")Ĩ----------- ' |        |  
       | ' Ĩ------------------------ '        |  
       )Ĩ----------------------------------- '  

The prototype as a fill element  

Certain functions require the addition of 'fill' elements to arrays, for example the functions Ĥ ('take'), \  

('expand') and /  ('replicate'). These function can add extra elements to an existing array; the prototype 
is used to determine the type and shape of the extra elements. 

The fill element depends on the type of the array being extended, as follows: 

Type of array Fill Element 

Numeric Zero 

Character Space 

Nested or mixed 
Prototype or first element, with numbers replaced by zeroes and characters 

by spaces 

Object or Class 

Reference 
The NULL object 

 
             5Ĥ3"4"5"""""""""""""""""*hknn"gngogpv"hqt"ukorng"pwogtke"ku"2+ 
       1 2 3 0 0  
             ŢFKURNC["7Ĥ)CDE)""""""""*hknn"gngogpv"hqt"ukorng"ejctcevgt"cttc{ 
       0ĥ---- .                        is blank)  
       |ABC  |  
       ' ----- '  
 
             ŢDISPLAY VAR            (nested array -  vector of length 2 )  
       0ĥ----------------------------------- .  
       ~"0ĥ------------------------ 0""0ĥ-- . |  
       ~"~"0ĥ---- 0""0ĥ----------- . |  |ABC| |  
       ~"~"Ħ"3"C"~""~"0ĥ-- .      | |  ' --- ' |  
       | | | B 2 |   | |1 2|   7  | |        |  
       | | '+ ---- '  | '~ -- '      | |        |  
       ~"~"""""""""")Ĩ----------- ' |        |  
       ~")Ĩ------------------------ '        |  
       )Ĩ----------------------------------- '  
 
             ŢFKURNC["5ĤXCT""""""""""*rtqvqtype used as trailing fill element)  
       0ĥ---------------------------------------------------------------- .  
       ~"0ĥ------------------------ 0""0ĥ-- 0""0ĥ------------------------ . |  
       ~"~"0ĥ---- 0""0ĥ----------- 0"~""~CDE~""~"0ĥ---- 0""0ĥ----------- .  | |  
       ~"~"Ħ"3"C"~""~"0ĥ-- .      | |  ' --- )""~"Ħ"2"""~""~"0ĥ-- .      | | |  
       | | | B 2 |  | |1 2|   7  | |         | |   0 |  | |0 0|   0  | | |  
       | | '+ ---- '  | '~ -- '      | |         | '+ ---- '  | '~ -- '      | | |  
       ~"~"""""""""")Ĩ---- ------- )"~"""""""""~"""""""""")Ĩ----------- ' | |  
       ~")Ĩ------------------------ )""""""""")Ĩ------------------------ ' |  
       )Ĩ---------------------------------------------------------------- '  
 



APLX Language Manual  24 

  

             ŢFKURNC["Ì5ĤXCT"""""""""*rtqvqv{rg"wugf"cu"leading fill element)  
       0ĥ---------------------------------------------------------------- .  
       ~"0ĥ------------------------ 0""0ĥ------------------------ 0""0ĥ-- . |  
       ~"~"0ĥ---- 0""0ĥ----------- 0"~""~"0ĥ---- 0""0ĥ----------- . |  |ABC| |  
       | ~"Ħ"2"""~""~"0ĥ-- 0""""""~"~""~"Ħ"3"C"~""~"0ĥ-- .      | |  ' --- ' |  
       | | |   0 |  | |0 0|   0  | |  | | B 2 |  | |1 2|   7  | |        |  
       | | '+ ---- '  | '~ -- '      | |  | '+ ---- '  | '~ -- '      | |        |  
       ~"~"""""""""")Ĩ----------- ' |  |          )Ĩ----------- ' |        |  
       ~")Ĩ------------------------ )"")Ĩ------------------------ '        |  
       )Ĩ---------------------------------------------------------------- '  



APLX Language Manual  25 

  

Display of arrays 

 
 

Display of simple, numeric arrays  

By default, numeric data is displayed with a space between each successive element of a vector (or 

dimension in an array). Arrays are displayed in such a way that their structure should be apparent. 

Vectors are displayed as a line of data. Matrices are displayed with each row of the matrix on 

successive lines of the screen or printer. For arrays of higher rank, the display is by means of 

successive matrices. Successive planes are separated by one blank line, successive blocks by two 
blank lines and so on. 

An empty vector displays as one blank line. Empty arrays of rank 2 or more are not displayed. 

Display of simple, character arrays  

These are displayed without spaces between elements on the row; other rules are the same as those for 
simple numeric arrays. 

Display of simple, mixed arrays  

The rules described above apply to simple arrays which are all character or all numeric. Simple, mixed 

arrays make use of the rule that a column which contains a number is always separated from adjacent 
columns by at least one blank. 

 
             MAT                     (Simple, mixed array, note columns are  
        A B   45 C                    separated by spaces)  
        D 999 F  1000  
             4"6ŝ)CDEFGHIJ)""""""""""*Ukorng"ejctcevgt"cttc{"-  columns not  
       ABCD                           separated)  
       EFGH 

Display of a class or object reference 

By default, APLX displays an object reference as the unqualified class name contained in square 
brackets. Class references are displayed as the class name in curly braces:  

 
              )CLASSES 
        Queue                     ő User - defined APL class  
              Queue 
        }Swgwg """""""""""""""""""ő"Fghcwnv"fkurnc{"qh"encuu"tghgtgpeg 
              SWGWG45ģŢPGY"Swgwg" 
              SWGWG45"""""""""""""ő"Fghcwnv"fkurnc{"qh"CRN"qdlgev"tghgtgpeg 
        [Queue]  

You can change the default display for an object by using the ŢFH system method. 



APLX Language Manual  26 

  

Display of nested arrays  

The display of any nested array is preceded by a leading blank so that nested arrays will be indented 

one space. It is also followed by a trailing blank. 

 
             Ŝ5                      (Simple vector)  
       1 2 3 4 5  
             *Ŝ5+"*Ŝ4+"""""""""""""""*Pguvgf"xgevqt"kpfgpvgf"d{"qpg"urceg+ 
        1 2 3  1 2  

The other rules for the display of nested arrays are: 

¶ At least one blank between columns with numbers 

¶ No separation between columns with scalar characters 

¶ Numbers right justified on the decimal point 

¶ Character vectors (containing only scalars) left justified 

¶ Columns with text and numbers right justified 

¶ Other nested items displayed with leading and trailing blank for each level of nesting. 

For example: 

 
             2 3 ŝ'ABC' 100027 'NAME' 3 'DAT' 27  
        ABC 100027 NAME  
          3    DAT   27  
             5"4ŝ)LQJP)")UOKVJ)")CTVJWT)")LQPGU)")YKNHTGF)")JCTV) 
        JOHN    SMITH  
        ARTHUR  JONES 
        WILFRED HART 



APLX Language Manual  27 

  

Vector Notation 

 
 

If an expression contains one or more arrays, then the resultant vector will contain elements which are 

those arrays. The way in which this type of expression is constructed is known as 'vector notation'. 

Parentheses or quote characters are used to delimit arrays in vector notation. Alternatively, the 
expression may contain variable names. 

 
             'ABC' 'DEF'             (Two three element character vectors make  
        ABC DEF                       a two element nested vector)  
 
             (1 2 3) 'DEF'           (Three ele ment numeric and three element  
        1 2 3  DEF                    character vector make a two element nested  
                                      vector)  
             ŝ1 2 3 'DEF'            (Three numeric scalars and a three element  
       4                              character vector make a four element vector)  
             ŝ(1 2 3) 'DEF'          (The parentheses force the three numbers  
       2                              to be treated as the first element of the  
                                      two element result)  
             ŝ1 2 3 'D' 'E' 'F'      (Each character is now treated as a scalar  
       6                              giving a 6 element mixed result)  
             ((1 2) (3 4)) 2 3       (First element of the vector is itself  
        1 2  3 4  2 3                 a nested vector -  two two element numeric  
                                      xgevqtu0"Vjg"ŢFKURNC["hwpevkqp"enctkhkgu<+ 
             ŢDISPLAY ((1 2)(3 4))2 3  
       0ĥ--------------------------- .  
       ~"0ĥ------------ - .           |  
       ~"~"0ĥ-- 0""0ĥ-- . |   2    3  |  
       | | |1 2|  |3 4| |           |  
       | | '~ -- '  '~ -- ' |           |  
       ~")Ĩ------------- '           |  
       )Ĩ--------------------------- '  
 
             Zģ4"4ŝŜ6""""""""""""""""*Vyq"tqy."vyq column numeric matrix)  
             [ģ)JGNNQ)"""""""""""""""*Hkxg"gngogpv"ejctcevgt"xgevqt+ 
             X Y                     (Variables entered in vector form)  
        1 2   HELLO  
        3 4  
             ŝX Y                    (Shape 2)  
       2 



APLX Language Manual  28 

  

Primitive Functions 

 
 

Built-in APL functions (or 'primitive' functions) are denoted by symbols (such as + -  ÷ ×). 

Primitive functions can be either monadic (which means they take a single right argument), or dyadic 

(in which case they take an argument on the left and an argument on the right). The same symbol may 
have both monadic and dyadic forms. 

Execution order 

A line of APL may consist of several functions, and arguments. All primitive and user-defined 

functions have the same precedence, and simply act on the data on the right. Thus, expressions are 

evaluated from right to left, and the result of one function becomes the (right) argument of the next 
function. See the section on Binding strengths for more details. 

Scalar and Mixed functions 

APL's primitive (i.e. built-in) functions fall into two classes, Scalar and Mixed functions. Scalar 

functions are defined on scalar arguments, and extend to arrays of any rank on an element-by-element 

basis. Mixed functions are defined on arrays, and may yield results which are different in shape or 

rank from their arguments. Most of the arithmetic primitives (such as addition, multiplication, 

logarithm) are scalar functions. 

If one of the arguments to a dyadic function is a scalar, the scalar is applied to each element of the 

other argument (a property known as scalar extension). The other important property of scalar 

functions is that they are pervasive, that is they apply at all levels of nesting. Monadic scalar functions 

are applied independently to every simple scalar in their argument, and the result retains the structure 

of the argument. Dyadic scalar functions are applied independently to corresponding pairs of simple 

scalars in the other argument. If one of the arguments is a scalar, it will be applied to all simple 
elements of the other argument. For example: 

 
      2 3 4 5 + 7 8 9 10  
9 11 13 15  
      23 + 7 8 9 10  
30 31 32 33  
      (1 2 3) (2 2 ŝ6"7"8"9+"*9":+"-"*32"33"34+"*4"4ŝ33"44"55"66+"*82"92+ 
 11 13 15   15 27   67 78  
            39 51  
      *3"4"5+"*4"4ŝ6"7"8"9+"*9":+"-"3 
 2 3 4   5 6   8 9  
         7 8  

Note that you can use the Each operator (¨ ) to apply a non-scalar function to each element of an array. 



APLX Language Manual  29 

  

Numbers or text 

Some functions work on numbers only. The arithmetic functions are in this category. You will get a 

message saying you've made a DOMAIN ERROR if you try to use any of the arithmetic operators on text 
data. 

Some functions work on either. The ŝ function, for example, can be used (with one argument) to find 

how many characters are in a text item, or how many numbers are in a numeric item. Its two-argument 

form (which you've seen used to shape data into a specified number of rows and columns) also works 
on either numbers or characters. 

The logical functions (logical ^ , Ĭ and the rest of that family) work on a subset of the number domain. 

They recognise two states only, true or false as represented by the numbers 1 and 0. If any other 
numbers or characters are submitted to them, a DOMAIN ERROR results. 

Arithmetic functions  

Function Monadic form Dyadic form 

+ Identity (Conjugate) (Scalar function) Add (Scalar function) 

-  Negate (Scalar function) Subtract (Scalar function) 

× Sign of (Scalar function) Multiply (Scalar function) 

÷ Reciprocal (Scalar function) Divide (Scalar function) 

Ľ Ceiling (Scalar function) Greater of (Scalar function) 

ľ Floor (Scalar function) Lesser of (Scalar function) 

|  Absolute value (Scalar function) Residue (remainder) of division (Scalar function) 

(Note: the -  minus sign represents the negate and subtract functions, the ̄ sign is used to identify 

negative numbers.) 

Examples of arithmetic functions 

A vector of numbers is multiplied by a single number. 

 
      2 6 3 19 × 0.5  
1 3 1.5 9.5  

A vector of numbers is divided by a single number: 

 
      3 7 8 11 ÷ 3  
1 2.333333333 2.666666667 3.666666667  

A vector of numbers is divided by a single number. The results are rounded up to the next whole 
number and are then displayed: 

 
      Ľ 3 7 8 11 ÷3  
1 3 3 4  



APLX Language Manual  30 

  

The same operation as the last example, except that 0.5  is subtracted from each number before it's 
rounded up in order to give 'true' rounding: 

 
      Ľ ¯0.5 + 3 7 8 11 ÷3  
1 2 3 4  

Two vectors containing some negative values are added. × is applied to the resulting vector to 

establish the sign of each number. The final result is a vector in which each positive number is 
represented by a 1, each negative number by a ¯1 and each zero by a 0. 

 
      ×12 ¯1 3¯5 + 2 ¯6 ¯4 5  
1 ¯1 ¯1 0  

The remainder of dividing 17 into 23 is displayed: 

 
      17 | 23  
6 

The remainders of two division operations are compared and the smaller of the two is displayed as 

final result: 

 
      (3 |7 ) ľ 4 | 11  
1 

Algebraic functions 

Function Monadic form Dyadic form 

Ŝ Index generator (see Comparative functions) 

? 
Roll (Random number) (Scalar 

function) 
Random deal 

*  'e' to power (Scalar function) Power (Scalar function) 

œ Natural Logarithm (Scalar function) Log to the base (Scalar function) 

ű pi times (Scalar function) 
Circular & Hyperbolic functions (Sine, cosine, etc) 

(Scalar function) 

!  
Factorial or Gamma function (Scalar 

function) 
Binomial (Scalar function) 

Ł Matrix inversion Matrix division 

Examples of algebraic functions 

The numbers 1 to 10 are put in a variable called X. 

 
      Z"ģ"Ŝ32 
1 2 3 4 5 6 7 8 9 10  

3 random numbers between 1 and 10, with no repetitions. 

 
      3?10  
2 8 3  



APLX Language Manual  31 

  

The logarithm to the base 2 of 2 4 8. 

 
      4"œ"4"6": 
1 2 3  

The number of combinations of 2 items which can be made from a population of 4 items. 

 
      2 ! 4  
6 

Comparative functions 

Function Dyadic form only 

< Less than (Scalar function) 

ĳ Less than or equal (Scalar function) 

= Equal (Scalar function) 

Ĵ Greater than or equal (Scalar function) 

> Greater than (Scalar function) 

İ Not equal (Scalar function) 

ı Match 

Ĳ Not Match 

Ĩ Membership 

Ŝ Index of 

ş Find 

Examples of comparative functions 

Are two given numbers equal? (1 = yes 0 = no) 

 
      10 = 5  
0 
      12 = 12  
1 

Are the corresponding characters in two strings equal? 

 
      'ABC' = 'CBA'  
0 1 0  

Is the first number greater than the second? 

 
      10 > 5  
1 

Is each number in the first vector less than the corresponding number in the second vector? 

 
      3 9 6  < 9 9 9  
1 0 1  



APLX Language Manual  32 

  

Is the number on the left in the vector on the right? 

 
      12 Ĩ 6 12 24  
1 

Is the character on the left in the string on the right? 

 
      )D)""Ĩ"")CDEFG) 
1 

Which numbers in a matrix are negative? (The contents of TABLE are shown first so that you can see 
what's going on.) 

 
      TABLE 
12 54  1  
¯3 90 23  
16 ¯9  2  
      TABLE < 0  
0 0 0  
1 0 0  
0 1 0  

Find the number on the right in the vector on the left and show its position. 

 
      35"9";"2Ŝ; 
3 

Are two matrices exact matches? 

 
      *4"4ŝŜ6+"ı""*4"4ŝŜ6+ 
1 

Find the pattern 'CAT'  within the characters 'THATCAT'  

 
      'CAT )"ş")VJCVECV") 
0 0 0 0 1 0 0  

Logical functions 

Function Monadic form Dyadic form 

~ Not (Scalar function) See Selection functions 

Ĭ 
 

Or (Scalar function) 

^  
 

And (Scalar function) 

Ś 
 

Nor (Scalar function) 

ś 
 

Nand (Scalar function) 

Examples of logical functions 

Logical NOT: 

 
      ~1 1 1 0 0 0 1  
0 0 0 1 1 1 0  



APLX Language Manual  33 

  

The same data submitted to various logical functions: 

 
      3"Ĭ"2 
1 
      1 ^ 0  
0 
      3"Ś"2 
0 
      3"ś"2 
1 

Each element in one vector is compared (^) with the corresponding element in another. 

 
      1 0 1 ^ 0 0 1  
0 0 1  

Two expressions are evaluated. If both are true (i.e. both return a value of 1) then the whole statement 

is true (i.e. returns a value of 1): 

 
      (5 > 4) ^ 1 < 3  
1 

Manipulative and selection functions 

Function Monadic form Dyadic form 

ŝ Shape of Reshape 

ı Depth of an array (see comparative functions) 

,  Ravel (Convert array to vector) Catenate (join) data items 

Ĩ Enlist (Make into simple vector) (see comparative functions) 

~ See logical functions Without (Removes elements from a vector) 

Į Unique Union 

ŕ 
 

Intersection 

Ń Reverse elements Rotate elements 

ŉ Transpose Transpose as specified 

Ĥ First Take from an array 

Ħ 
 

Drop from an array 

ĵ Enclose an array Partition (Creates an array of vectors) 

Ķ Disclose an array Pick items from an array 

ŀ 
 

Index an array 

Ĺ Stop (replace argument with empty) Left (pass left argument) 

ĸ Pass (argument unchanged) Right (pass right argument) 

Examples of manipulative functions 

An enquiry about the size of a character string: 

 
      ŝ 'ARLINGTON A .J, 22 BOND RD SPE 32E'  



APLX Language Manual  34 

  

33 

A three-row four-column matrix is formed from the numbers 1 to 12 and is assigned to DOZEN: 

 
      FQ\GP"ģ"5"6"ŝ"Ŝ"34 
      DOZEN 
1  2  3  4  
5  6  7  8  
9 10 11 12  

The matrix DOZEN is ravelled into a vector: 

 
      ,DOZEN 
1 2 3 4 5 6 7 8 9 10 11 12  

The matrix DOZEN is first converted to vector form and is then catenated (joined) with the vector 
13 14 15): 

 
      (,DOZEN), 13 14 15  
      DOZEN 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  

The matrix DOZEN is re-formed from the original data in reverse order: 

 
      +DOZEN ģ"5"6ŝŃ.FQ\GP 
12 11 10 9  
 8  7  6 5  
 4  3  2 1  

Numbers are removed from a vector: 

 
      1 2 3 4 5 6 ~ 2 4 6  
1 3 5  

First 3 characters are selected from a vector: 

 
      5"Ĥ)CYHWNN[) 
AWF 

Data array enclosed into a nested scalar, with an empty shape: 

 
      ĵ;;;"56 
 999 34  
      ŝĵ999 34  
empty  

Index the third item from a vector: 

 
      5"ŀ"3"4"5"6"7 
3 



APLX Language Manual  35 

  

Sorting and coding functions 

Function  

  
Monadic form      Dyadic form 

Ŋ Ascending sorted indices, default sort order Ascending sorted indices, specified sort order 

ō 
Descending sorted indices, default sort 

order 

Descending sorted indices, specified sort 

order 

ĺ 
 

Encode (Convert to a new number system) 

Ļ 
 

Decode (Convert back to units) 

Examples of sorting and coding functions 

To put a vector of numbers into ascending order: 

 
      NKUV"ģ"422"76"35";"77"322"36":4 
      ŊLIST  
4 3 7 2 5 8 6 1  
      LIST[4 3 7 2 5 8 6 1)  
9 13 14 54 55 82 100 200  

To sort the same vector as in example 1 with less typing: 

 
      NKUV]ŊNKUV_ 
9 13 14 54 55 82 100 200  

To find how certain symbols rank in the collating order (i.e. the order in which APL holds characters 
internally): 

 
      U[ODU"ģ")Ł\ İ*1) 
      QTFGT"ģ"ŊU[ODU 
      SYMBS[ORDER] 
Łİ/( \  

To convert the hex number 21 to its decimal equivalent: 

 
      38"38"Ļ"4"3 
33 

Formatting functions 

Function Monadic form Dyadic form 

Ŏ Format Format by specification, Format by example 

š 
 

Picture format 

Examples of formatting functions 

To display each number in a vector in a 6-character field with two decimal places: 

 
      8"4"Ŏ"820555555 19 2 52.78  
60.33 19.00 2.00 52.78  



APLX Language Manual  36 

  

To display each number in a vector preceded by a dollar sign and with up to three leading zeroes 
suppressed: 

 
      )&&\.\\;)"š"5:;;"88"4 
$3,899    $66     $2  
 

Miscellaneous functions and other symbols 

Function 
 

Ţ Accept numbers from keyboard or Output with newline 

Œ Accept characters from keyboard or Bare output 

ļ Statement separator 

ő Comment 

ŋ Execute an APL expression 

ř Empty numeric vector (Zilde) 

 



APLX Language Manual  37 

  

Primitive Operators 

 
 

An 'operator' modifies the behaviour of a primitive or user-defined function. It has an operand or 

operands that are primitive, derived or user-defined functions or data. The result of using an operator 

is known as a derived function which can then be applied monadically or dyadically to data or 

alternatively it may be, in turn, used as an argument to another operator. Operators can themselves be 
monadic or dyadic. Monadic operators will be placed to the right of their operands: 

 
             +/                      (Monadic / operator)  
             ŝ̈                      (Monadic ¨ operator)  
             +.×                     (Dyadic . operator)  

Operators form a powerful extension to the repertoire of the language. They can be used to specify the 

way in which a function or functions are to be applied to data - they allow a function to be applied 
repeatedly and cumulatively over all the elements of a vector, matrix or multidimensional array. 

The primitive operators available are: 

Operator Name 

/  Reduce or Compress 

\  Scan or Expand 

.  Inner Product 

ĩ0 Outer Product 

¨  Each 

[ ]  Axis 

Reduce and scan 

When used with functions as their operand, slash and backslash are known as reduce and scan. 

Reduce and scan apply a single function to all the elements of an argument. For example, to add up a 
vector of arguments, you can either type: 

 
      22 + 93 + 4.6 + 10 + 3.3  
132.9  

or alternatively: 

 
      +/22 93 4.6 10 3.3  
132.9  

The /  operator in the last example had the effect of inserting a plus sign between all the elements in 

the vector to its right. 

The \  operator is similar except that it works cumulatively on the data, and gives all the intermediate 
results. So: 

 



APLX Language Manual  38 

  

      +\ 22 93 4.6 10 3.3  
 22 115 119.6 129.6 132.9  

from the results of: 

 
      22 (22+93) (115+4.6) (119.6+10) (129.6+3.3)  

Compress and Expand 

When used with one or more numbers as their operand, slash and backslash carry out operations 

known as compress and expand. 

Compress can be used to select all or part of an object, according to the value of the numbers forming 

its operand. For example, to select some characters from a vector: 

 
      1 0 1 1 0 1 / 'ABCDEF'  
ACDF 

Conversely, expand will insert fill data into objects: 

 
      TAB ģ"4"5ŝŜ8 
      TAB 
1 2 3  
4 5 6  
      1 0 1 0 1 \ [2]TAB  
1 0 2 0 3  
4 0 5 0 6  

Columns are inserted in positions indicated by the 0s. (Note also the use of the axis operator). 

Outer and inner products 

The product operators allow APL functions to be applied between all the elements in one argument 
and all the elements in another. 

This is an important extension because previously functions have only applied to corresponding 
elements as in this example: 

 
      1 2 3 + 4 5 6  
5 7 9  

The outer product gives the result of applying the function to all combinations of the elements in the 
two arguments. For example, to find the outer product of the two arguments used in the last example: 

 
      1 2 3 ĩ.+ 4 5 6  
5 6 7  
6 7 8  
7 8 9  

The first row is the result of adding the first element on the left to every element on the right, the 

second row is the result of adding the second element in the left to every element on the right and so 
on till all combinations are exhausted. 



APLX Language Manual  39 

  

This example works out a matrix of powers: 

 
      3"4"5"6"ĩ0,3"4"5"6 
1  1  1   1  
2  4  8  16  
3  9 27  81  
4 16 64 256  

as can be seen more clearly if we lay it out like this: 

 
 |  1   2   3    4  
 |¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯  
1|  1   2   3    4  
2|  2   4   6    8  
3|  3   9  27   81  
4|  4  16  64  256  

(Since the outer product involves operations between all elements, rather than just between 
corresponding elements, it's not necessary for the arguments to conform in shape or size.) 

The inner product allows two functions to be applied to the arguments. The operations take place 

between the last dimension of the left argument and the first  dimension of the right argument, hence 
'inner' product since the two inner dimensions are used. 

In the case of matrices, first each row of the left argument is applied to each column of the right 

argument using the rightmost function of the inner product, then the leftmost function is applied to the 
result, in a reduction (/ ) operation. 

Given that you can use a combination of any two suitable functions, there are many possible inner 
products. These can perform a variety of useful operations. Some of the more common uses are: 

¶ locating incidences of given character strings within textual data 

¶ evaluation of polynomials 

¶ matrix multiplication 

¶ product of powers 

 

Each 

As its name implies, the each operator will apply a function to each element of an array. 

So, to find the lengths of an array of vectors 

 
      ŝ̈(1 2 3) (1 2) (1 2 3 4 5)  
3 2 5  

As with other operators, each can be used for user-defined functions. Here we use an 'average' 
function on an array of vectors. 



APLX Language Manual  40 

  

 
      AVERAGE 1 2 3  
2 
      AVERAGE ¨ (1 2 3) (4 5 6) (10 100 1000)  
2 5 370  



APLX Language Manual  41 

  

Axis Operator 

 
 

A number of primitive functions and operators can be applied to a particular axis (or dimension) of an 
array. The [  ]  brackets are used to indicate the axis being specified. 

The highest dimension of a data item is considered to be the first dimension and the lowest dimension 

the last . Thus the first dimension of a matrix is the rows and the last dimension is the columns. In the 
case of a three-dimensional object, the first dimension is the planes followed by the rows and columns. 

Axis numbers are governed by the Index Origin, ŢKQ. and in Index Origin 1, (the default), the first 

dimension is represented by [1],  the second by [2]  and so on. In Index Origin 0 the first dimension 

would be [0],  the second [1]  and so on. The number used to represent the axis is always a whole 
number, except for the ravel and laminate functions. 

The primitive functions and operators which will accept an axis operator include the dyadic forms of 

the primitive scalar functions : 

 
     + -  × ÷ | Ľ ľ ,"œ"ű"#"`"Ĭ"ś"Ś">"ĳ"?"Ĵ"@"İ 

and some primitive mixed functions : 

 
     ."ŗ"""""""Tcxgn1Ecvgpcvg1Ncokpcvg"""""""*pqvg"hktuv"czku"xctkcpv+ 
     Ń ķ       Reverse/Rotate                (note first axis variant)  
     ĵ"""""""""Gpenqug1Rctvkvkqp 
     Ķ"""""    Disclose  
     Ĥ"""""""""Vcmg 
     Ħ"""""""""Ftqr 
     ŀ         Index  

as well as the operators: 

 
     1"ń"""""""Eqortguu1Tgrnkecvg""""""""""""*pqvg"hktuv"czku"xctkcpv+ 
     1"ń"""""""Tgfweg""""""""""""""""""""""""*pqvg"hktuv"czku"xctkcpv+ 
     \  Ņ       Scan                          (note first axis variant)  
     \  Ņ       Expand                        (note first axis variant)  

See the reference section entry for Axis ([])  for more details, as well as the reference entries for 

individual mixed functions and operators listed above. 



APLX Language Manual  42 

  

Formatting  

 
 

The default way in which APL displays results may not always suit your requirements. Obviously you 

can do a certain amount by using functions like size to reshape data, or catenate to join data items, but 

for many applications you may want much more sophisticated facilities. You may, for example, want 

to insert currency signs and spaces in numeric output, or produce a neatly formatted financial report, 
or specify precisely the format in which numbers are displayed. 

APLX has a variety of functions for formatting data, providing flexibility as well as compatibility with 
a number of other APL interpreters. 

Formatting functions 

There are three functions in APLX which all convert the format of data from numbers to characters, 
and allow you to specify how the converted numeric data should be laid out. 

The functions are: 

¶ The Ŏ primitive (Format, Format by specification, Format by example)  

¶ The š primitive (Picture format)  

¶ The ŢHOV system function.  

Each function lets you specify how many character positions a number should occupy when it is 

displayed, and how many of these positions are available for decimal places. The number of characters 
and number of decimal places are specified in the left argument: 

 
      8"4"Ŏ"35630:4;43 
341.83  

(Note that since the number had to be truncated to fit the character positions allowed, it was first 
rounded to make the truncated representation as accurate as possible.) 

Picture format (š) and Format by Specification (Ŏ with a character left argument) allow you to use 

editing characters to define a 'picture' of how data should look when it is displayed. The picture is the 

left argument and the data the right. 

The following example shows the values in a 4-row 2-column matrix called TAB. It then shows the š 
function applied to this matrix and its effect on TAB: 

 
      TAB 
1096.2   ¯416.556  
 296.974  1085.238  
¯811.188  844.074  
¯745.416  153.468  
 



APLX Language Manual  43 

  

      )&&\.\\;0;;"FT""""""")"š"VCD 
 $1,096.20               $416.56 DR  
   $296.97             $1,085.24  
   $811.19 DR            $844.07  
   $745.42 DR            $153.47  

ŢHOV takes the process a stage further, allowing a variety of picture phrases, qualifiers and decorators 
to be supplied as the format specification. 

 
      )D"M4"I>"\\;"FQNNCTU"CPF";;"EGPVU@)"ŢHOV":045"340:8"2"4074 
   8 DOLLARS AND 23 CENTS  
  12 DOLLARS AND 86 CENTS  
 
   2 DOLLARS AND 52 CENTS  



APLX Language Manual  44 

  

Names 

 
 

The following rules apply to user-assigned symbols, i.e. the names of variables, functions, operators, 
classes and labels in APLX. 

The first character of the name must be one of the alphabetic characters A- Z or a- z, or one of the 
characters Ģ or Ő. Subsequent characters can also include digits 0- 9, underbar _ and high minus ̄.  

Names consist of up to 30 characters (longer names will be truncated). 

The following are all valid names in APLX: 

 
FCVC"Z"Z3"HKTUVaXCNWG"Ģ"ĢN3"GttqtEqfg"oqfgn"oqfgÌtguvctv"c;;;"KvgoĢ3 

Case is significant in names, so DATA Data  and data  are three distinct names. 

There are no reserved names in APL. System-assigned names are distinct from user-assigned names 
because they start with a Quad Ţ symbol. 



APLX Language Manual  45 

  

Specification (Assignment) 

 
 

The symbol ģ associates the data on its right with the name specified on its left. The named data is 

known as a variable. The name associated with it is the variable name. Subsequent references to the 

variable name automatically refer to the data associated with that name. This operation is known as 
specification or assignment. 

 
             PWOģ"46""""""""""""""""""""""*uecnct"46"ku"cuukipgf"vq"PWO+ 
             FGUETPģ)KVGO"463C)"""""""""""*ukorng"ejctcevgt"xgevqt+ 
             RTKEGUģ"4056";052"34"8205:   (numeric vector is assigned to PRICES)  
             FCVCģ3")C)"4")F)"""""""""""""*okzgf"xgevqt"cuukipgf"vq"FCVC+ 

When entering character data, care must be exercised if the quote character is to be included in the 

data. As stated above, adjacent quote marks are evaluated as indicating the quote character in the data. 

A vector containing only characters can be entered in one of two ways -  the characters can either be 

entered within one set of quote marks or the characters must be separated by spaces. See also the 

section on Vector Notation. 

 
             ALFģ)C)")D)")E)")F)"""""*fcvc"ku"c"ugv"qh"ejctcevgtu+ 
             ALF 
       ABCD 
             CNHģ)CDEF)""""""""""""""*cnvgtpcvkxg"ogvjqf"qh"gpvt{+ 
             ALF 
       ABCD 
             CNHģ)C))D))E))F)""""""""*pq"urceg"dgvyggp"ejctcevgtu+ 
             ALF 
       A'B'C'D  

The right argument to ģ can be any APL expression that generates a result: 

 
             EQUVģ332- 67                  (The result of evaluating an  
             COST                          expression is assigned to  
       43                                  COST) 
             RTQHKVģ*RTKEGģEQUVô304+-EQUVģ322 
             PROFIT                       (right to left execution ensures  
       20                                  that the value assigned to  
                                           COST is used in the expression  
                                           inside parentheses.)  

Variables which are either scalars or vectors can be entered directly, as shown above. Matrices or 

higher dimensional arrays must be established or entered via functions (see for example ŝ. 'reshape'). 

 
             VCDģ4"5ŝŜ8"""""""""""""""""""*Vjg"pwodgtu"3"-  6 are arranged as 2  
                                           rows of 3 columns and are assigned  
                                           to TAB)  



APLX Language Manual  46 

  

Multiple specification 

 
 

It is possible to make multiple simultaneous assignments by enclosing a list of variable names in 
parentheses on the left of an assignment arrow. 

 
             *C"D"E+ģ"3"4"5 
             A 
       1 
             B 
       2 
             C 
       3 

A scalar to the right of the assignment arrow will be assigned to every item on the left. This is known 
as 'scalar extension'. 

 
             *C"D"E+ģ7 
             A 
       5 
             B 
       5 
             C 
       5 
             *C"D"E+ģ")JK)")VJGTG)")HQNMU) 
             ŝA                      (A assigned 'HI' and so on)  
       2 
             *C"D"E+ģĵ)JK)")VJGTG)")HQNMU) 
             ŝA                      (A, B and C assigned the enclosed vector  
       3                              to the right of the assignm ent arrow)  

Caution:  

Do not omit the parentheses if you are trying to do multiple specification, as in: 

 
             C"D"Eģ7 

This expression will assign the value 5 to C and then attempt to evaluate the resultant expression. See 
also the discussion of binding strengths. 



APLX Language Manual  47 

  

Selective specification 

 
 

A number of APL functions can be used to select elements or portions of an array. These selection 

operations can also be used as specifications when enclosed in parentheses and used as the left 

argument to the assignment symbol. The array being selected must appear as the rightmost name 

within the parentheses. The following functions can be used to make the selection, either singly or in 
combinations. 

Monadic Ĩ Ĥ ,  Ń ŉ ķ 

Dyadic Ĥ Ħ Ķ ŝ Ń ŉ ķ ŀ 

and the functions \  ('expand') and /  ('compress', 'replicate'). 

Bracket indexing can also be used as the left argument to the assignment arrow although in this case it 
is not necessary to enclose the indexing expression in parentheses. 

Some examples will illustrate. 

First, bracket indexing: 

 
             VCDģ4"5ŝŜ8""""""""""""""*Ukorng"ocvtkz+ 
             VCD]4=3_ģ:""""""""""""""*Tqy"4"eqnwop"3"cuukipgf"vjg"xcnwg":+ 

Nearly all the selection functions listed above operate on the outermost structure of a nested array. The 

shape of the right argument to the assignment arrow must either match that of the selected elements or 
be a scalar in which case scalar extension applies. 

 
             XGEģŜ7 
             *5ĤXGE+ģ)CDE)""""       (First three elements become 'ABC')  
             VEC 
       ABC 4 5  
             *5ĤXGE+ģ)C)"""""""""""""*C"uecnct"tkijv"ctiwogpv"ku"gzvgpfgf"vq 
             VEC                      all items specified)  
       AAA 4 5  
             OCVģ5"6ŝ)CDEFGHIJIJKL'   (Simple character matrix)  
             *.OCV+ģ)PGY"FCVCJGTG)"""*Tcxgn"wugf"hqt"ugngevkqp."uq"xgevqt 
             OCV""""""""""""""""""""""wugf"cu"tkijv"ctiwogpv"vq"ģ+ 
       NEW 
       DATA 
       HERE 
             **)C)?.OCV+1.OCV+ģ),)"""*Eqodkpcvion of compression and ravel  
             MAT                      used for selection)  
       NEW 
       D*T*  
       HERE 
             *.4"4ĤOCV+ģ)ŢŢŢŢ)"""""""*Eqodkpcvkqp"qh"Ĥ"cpf"."wugf"hqt 
             MAT                      selection)  
       ŢŢW 
       ŢŢT*  
       HERE 



APLX Language Manual  48 

  

             VCDNGģ5"6ŝŜ34 
             TABLE 
       1  2  3  4  
       5  6  7  8  
       9 10 11 12  
             *3"2"3"21VCDNG+ģ5"4ŝ322"*Eqortguukqp"wugf"hqt"ugngevkqp+ 
             TABLE 
       100  2 100  4  
       100  6 100  8  
       100 10 100 12  
             FCVCģŜ35 
             Zģ32"42"52""""""""""""""*Qvjgt"CRN"hwpevkqpu"oc{"dg"wugf"ykvjkp 
             **ŝZ+ĤFCVC+ģZ""""""""""""vjg"rctgpvjgugu"-  jgtg"ŝ"ku"wugf"vq"uwrrn{ 
             FCVC"""""""""""""""""""""vjg"nghv"ctiwogpv"vq"Ĥ)  
       10 20 30 4 5 6 7 8 9 10 11 12 13  
             [ģŜ32 
             Zģ5 
             **4-Z+Ĥ[+ģŃŜZ-4"""""""""*Nghv"ctiwogpv"vq"Ĥ"kpenwfgu"vjg"-"hwpevkqp+ 
             Y 
       5 4 3 2 1 6 7 8 9 10  

The function enlist *Ĩ+ removes all nesting from an array. When used with selective specification, it 

can be used to replace elements at the deepest level of nesting, whilst retaining the arrayôs structure . 

 
             PGUVģ*4"4ŝŜ6+")VGZV)"*5"3ŝŜ5+ 
             NEST 
        1 2   TEXT   1  
        3 4          2 
                     3 
             *ĨPGUV+ģ2"""""""""""""""*Gpvktg"cttc{"ugv"vq"2."dwv"qtkikpcn 
             NEST                     structure retained)  
        0 0   0 0 0 0   0  
        0 0             0  
                        0 
      *8ŀĨPGUV+ģ999                  (Single element at bottom of nested array  
      NEST                            array altered)  
 0 0   0 999 0 0   0  
 0 0               0  
                   0 
      *9ŀĨPGUV+ģĵ)VGZV)""""""""""""""*Hwtvjgt"pguvkpi"kpvtqfwegf+ 
      NEST 
 0 0    0 999 TEXT 0    0  
 0 0                    0  
                        0 

The function first *Ĥ+. selects the whole array which is the first element in an array. If first is used 

purely to select the first array within a nested array, then the array which is the right argument to the 

assignment arrow will replace the selected array. 

 
             *ĤPGUV+ģ)CDE)"""""""""""*Hktuv"gngogpv"qh"PGUV"ku"c"ocvtkz"qh 
             NEST                     shape 2 by 2. This is replaced by  
        ABC  0 999 TEXT 0     0        a length 3 vector)  
                             0 
                             0 
             *4ŀĤPGUV+ģ)Ţ)"""""""""""*Qpg"gngogpv"ykvjkp"vjg"hktuv"gngogpv"qh 
             NEST                     NEST is replaced)  
        CŢE""2";;;"VGZV"2""" 0 
                             0 
                             0 



APLX Language Manual  49 

  

Pick *Ķ+ will select an entire array at an arbitrary depth in a nested array, and will also replace that 
entire array by the right argument to the specification symbol. 

 
             4"4ĶPGUV 
       999  
             *4"4ĶPGUV+ģŜ32""""""""""*Pgy"cttc{"rncegf"kp"4"4Ķ"qh"PGUV+ 
             NEST 
        CŢE""2""3"4"5"6"7"8"9":";"32""VGZV"2""""2 
                                                0 
                                                0 
             *4ĶPGUV+ģ)FCVC)"""""""""*Pguvgf"xgevqt"cv"gngogpv"4"tgrncegf"d{ 
             NEST                     length 4 vector)  
        CŢE"FCVC"""2 
                   0 
                   0 
             *5"*4"3+ĶPGUV+ģ3222"""""*Tqy"4"eqnwop"3"qh"gngogpv"5 
             NEST                     specified)  
        CŢE"FCVC""""""2 
                   1000  
                      0 

There are some exceptions and restrictions to the rules for selective specification: 

-  User-defined functions and operators cannot be used within selective specification 

-  Execute *ŋ+ is not allowed within selective specification 

-  System functions are allowed within selective specification with the exception of those which use 

execute *ŢGC and ŢGE+ 

-  The selection expression must select elements from the variable and not insert fill items (as, for 

example, can be done by expand and replicate). 

-  No arithmetic operations can be carried out on the array being specified or on the elements selected 

-  Assignments are not allowed within the parentheses used for selective specification. 

-  Selective and multiple specification operations cannot be mixed. 

Thus, if 

             Xģ5"6"7 

then the following expressions are not allowed: 

 
             *CXGTCIG"Z+ģ8"""""""""""*Wug"qh"wugt- defined function)  
 
             **ŋ)3-4)+ĤZ+ģ)CDE)""""""*Wug"qh"gzgewvg+ 
 
             **[ģ4+ĦZ+ģ)C)"""""""""""*Cuukipogpv"ykvjkp"vjg"ugngevkqp"gzrtgusion)  
 
             **4ĦZ+"["\+ģ)CDE)"""""""*Okzvwtg"qh"ownvkrng"cpf"ugngevkxg 
                                      specifications)  



APLX Language Manual  50 

  

             *32ĤZ+ģŜ32""""""""""""""*Hknn"kvgou"kpugtvgf"d{"vjg"ugngevkqp 
                                      expression )  

As stated above, arithmetic may not be carried out on the elements of an array that are selected: 

 
             ZģŜ7 
             *4-3ĤZ+ģ7 
       DOMAIN ERROR 
       *4-3ĤZ+ģ7 
            ^  

but other expressions within the specification parentheses may use arithmetic operations, even on 
another instance of the name being specified: 

 
             **4-3ĤZ+ĤZ+ģ322 
             X 
       100 100 100 4 5  



APLX Language Manual  51 

  

Binding strengths 

 
 

In simple terms, APL evaluates expressions right-to-left, that is to say the result of the rightmost 

function is evaluated, and becomes the right argument of the next function. There are no 'precedence 
rules' to remember; all primitive and user-defined functions have the same precedence. For example: 

 
      7ŝ504ô34Ĕ6 
9.6 9.6 9.6 9.6 9.6  

In this example, the division 12÷4  is evaluated first. The result of this expression becomes the right 

argument of the multiply, which returns the scalar result 9.6 . This in turn becomes the right argument 
of the reshape (ŝ) function. 

The right to left function execution rule needs to be modified to cope with more complex expressions, 

for example nested vectors or certain expressions containing operators. The 'binding strength' defines 

how certain symbols 'bind' for evaluation. The order of binding strengths is shown below, in 

descending order. (Note that binding strengths can be altered by the ŢEU and )CS ('compatibility 
setting') commands.) 

Binding  Bound items 

Brackets []  Brackets to object to the left 

Specification ģ left  ģ to object on its left 

Right Operand Dyadic operator to its right operand 

Vector Array to array 

Left Operand Operator to its left operand 

Left Argument Function to left argument 

Right Argument Function to right argument 

Specification ģ right ģ to object on its right 

Parentheses can override the binding strength hierarchy. Some examples include: 

 
             Cģ)FGH'                 (Set up variables A B)  
             Dģ)Z[\) 
             A B  
       DEF XYZ 
             A B[2]                  ([] has higher binding than vector so the  
       DEF Y                          result includes the second element of B)  
             (A B)[2]                (Parentheses force selection of B)  
       XYZ 
             C"Dģ5"""""""""""""""""""*ģ"jcu"uvtqpigt"dkpfkpi"vjcp"xgevqt+ 
       DEF 3  
             *C"D+ģ5"""""""""""""""""*Rctgpvjgugu"cnvgt"dkpfkpi+ 
             A 
       3 
             B 
       3 
 



APLX Language Manual  52 

  

             1 2 3 + 4 5 6           (Vector has stronger binding than function)  
       5 7 9  
             1 2 (3+4) 5 6           (Parentheses alter binding)  
       1 2 7 5 6  
             1 0 1/'ABC'             (Vector has stronge r binding than left  
       AC                             operand, so left operand is 1 0 1)  
             +/[2]2 2 ŝŜ4             (Axis brackets have stronger binding than  
       3 7                            operator to operands, so /[2] operator  
                                      is formed  

Finally, the relative binding strengths of left and right operands can be used to predict the result of 

expressions with multiple operators. +.×. -  is evaluated as (+.×). -  and not as +.(×. - )  since the × 
binds first as right operand to the first . ('inner product') operator. 



APLX Language Manual  53 

  

Bracket indexing 

 
 

Bracket indexing can be used to select elements from an array, for example one or more elements from 
a vector, or individual rows or columns of a matrix. 

The index or indices are enclosed in square brackets, each dimension being separated by a semicolon. 

If no number is used for a particular dimension, then all the elements in that dimension are selected. 

APL allows index references to start either at 0 or 1. The index origin (which is controlled by ŢKQ or 

)ORIGIN)  determines whether index positions start from 1 or 0. In the examples below, and generally 
throughout this manual, the default convention of index origin 1 is used. 

 
             NKUVģ34"46"58"6: 
             LIST[2]                 (Selects the second item in LIST)  
       24 
             LIST[1]+LIST[4]         (Adds the first an d fourth items in LIST)  
       60 
 
             CNHģ)CDEFGHIJKLMNOPQRSTUVWXYZ[\) 
             ALF[26 1 13 2 9 1]      (Selects the letters in ZAMBIA  
       ZAMBIA                         from the contents of ALF)  
 
             TABLE                   (TABL E consists of 2 rows and 4 columns)  
       10 20 30 40  
       50 60 70 80  
            TABLE[1;4]               (Selects the item in row 1, column 4)  
       40 
 
             TABLE[1;1 2 3 4]+TABLE[2;1 2 3 4]  
       60 80 100 120                 (Adds the 4 columns in row 1 to the  
                                      4 columns in row 2)  
 
             TABLE[1;]+TABLE[2;]      (Shorthand way of doing the same  
       60 80 100 120                  operation as in the last example)  

In general, the indices may be of any shape or rank, so long as each of their elements correspond to 

valid elements within the array being indexed. The shape of the result of an indexing operation is 
generated by the shape of the index arrays. Thus 

 
             ŝTABLE[A;B]             (Where A and B are arrays)  

is identical to 

 
             *ŝC+.ŝD 

This has the important consequence, that if all the indexing arrays are in fact scalars, the result is also 

a scalar. Similarly, any axis of an array indexed by a scalar generates a result in which that axis does 
not exist. 

 
             CNH]4"4ŝŜ6_"""""""""""""*CNH"kpfgzgf"d{"c"ocvtkz+ 
       AB                            (Result is a matrix)  
       CD 



APLX Language Manual  54 

  

             ŝTABLE[1;1 2 3 4]       (Rows indexed by a scalar, result is  
       4                              a vector)  
 
             ŝTABLE[,1;1 2 3 4]      (Rows indexed by a vector, result is  
       1 4                            a matrix)  
 
             ŝVCDNG]3"3ŝ3=3"4"5"6_"""*Tqyu"kpfgzgf"d{"c"ocvtkz. 
       1 1 4                          result is a three dimensional array  

The ŀ ('index') function  

An alternative to bracket indexing is the ŀ ('index') function, which is discussed fully in the reference 

section. The index specification is given as the left argument to the ŀ function and is equivalent to 

bracket indexing in that 

 
             TQY"EQN"ŀ"OCVTKZ 

and 

 
             MATRIX[ROW;COL] 

are equivalent. Although arguably less readable than bracket indexing, the index function has the 

advantage that it is syntactically consistent with other APL primitive functions, and can thus be used 
with operators such as Each. 



APLX Language Manual  55 

  

User-defined Functions 

 
 

User-defined functions are the equivalent of subroutines or functions in other programming languages. 
They associate a series of lines of APL code with a name chosen by the programmer. 

When a function is evaluated, it performs some action on data known as an 'argument'. Functions may 

have no arguments, one argument, or two arguments. These three types of functions are often referred 
to as follows: 

 
               0 arguments             Niladic  
               1 argument              Monadic       Argument on right  
               2 arguments             Dyadic        Arguments on left and right  

If you defined a function called. say, SD which found the standard deviation of a set of numbers, you 

could write it so that it expected the data as its right-hand argument. You would then call SD in exactly 
the same way as a primitive function such as Ľ: 

 
      Z"ģ"UF"45":;"78"34";;"4"38";4 

A function may or may not return a result. 

You specify the number of arguments the function is to have, and the name of the result field (if there 

is one) when you define the function header of the function you are about to write. 

Header line for user-defined functions  

In addition to the names used for the left and right arguments and result (if applicable) which will all 

be 'local', the header line may also be used to localize other variables (and system variables), as well as 

function names. Whilst the function or operator is running, these local variables 'shadow' global 

variables of the same name, that is they will exclude from use a global object of the same name. 

System commands continue to reference the global objects. Local variables (and functions) are 
however themselves global to functions called within their function or operator. 

The general format for a function header is: 

 
             Tģ"C"HWPEVKQP"D=XCT3=XCT4 
or  
                A FUNCTION B;VAR1;VAR2  

depending on whether or not a result is returned. R, the result, A, the left argument, B, the right 

argument are all optional. Local names, if any, are listed after the function name and arguments, 

separated from them and each other by semi-colons (;), VAR1 and VAR2 above. Comments may also 
appear at the end of the header line, following a ő ('comment') symbol. 



APLX Language Manual  56 

  

Editing functions 

In most versions of APLX, there are two ways to create or edit a function. 

The most commonly used way is to use an on-screen editor, which allows you to edit the function 

text very easily in an editor window. The editor is either invoked through the application's Edit menu, 

or with the )EDIT  system command (or the ŢGFKV system function), e.g. 

 
      )EDIT FUNK  

For backward compatibility with old APL systems, APLX also supports a primitive line-at-a-time 

editor called the Del (or Line) Editor. To enter definition mode and create a new function you type ħ 

(Del) followed by the function name. If you type nothing else, you are defining a function that will 
take no arguments: 

 
      ħHWPM 

For clarity, we will list functions here as though they were entered using the Del editor, where a ħ 

character is used to mark the start and end of the function listing. If you are using the on-screen editor, 
you do not type the ħ characters or the line numbers. 

The function header 

The first line of a function is called the function header. This example is the header for a function 
called FUNK: 

 
      ħHWPM 

If you want the function you are defining to have arguments you must put them in the header by 
typing a suitable function header: 

 
      ħUF"Z 

The above header specifies that SD will take one argument. Here is what SD might look like when you 
had defined it: 

 
      ħUF"Z 
  ]3_"UWO"ģ"-1Z 
  ]4_"CX"ģ"UWOĔŝZ 
  ]5_"FKHH"ģ"CX- X 
  ]6_"USFKHH"ģ"FKHH,4 
  ]7_"USCX"ģ"*-1USFKHH+ĔŝUSFKHH 
  ]8_"TGUWNV"ģ SQAV*0.5  
      ħ 

It's quite unimportant what the statements in the function are doing. The point to notice is that they use 

the variable X named in the function header. When SD is run, the numbers typed as its right-hand 

argument will be put into X and will be the data to the statements that use X in the function. So if you 
type: 

 
      SD 12 45 20 68 92 108  



APLX Language Manual  57 

  

those numbers are put in X. Even if you type the name of a variable instead of the numbers themselves, 
the numbers in the variable will be put into X. 

The function header for a dyadic (two-argument) function would be defined on the same lines: 

 
      ħZ"ECNE"[ 

When you subsequently use CALC you can supply two arguments: 

 
      1 4 7 CALC 0 92 3  

When CALC is run the left argument will be put into X and the right argument into Y. 

If you want the result of a function to be put into a specified variable, you can arrange that in the 
function header too: 

 
      ħ\"ģ"Z"ECNE"[ 

In practice, most APL functions return a result, which can then be used in expressions for further 

calculations, or stored in variables. 

Defining Z to be the result of X CALC Y  allows the outcome of CALC to be either assigned to a variable, 

or passed as a right argument to another (possibly user-defined) function, or simply displayed, by not 

making any assignment. The variable Z acts as a kind of surrogate for the final result during execution 
of CALC. 

Local and global variables 

Variable names quoted in the header of a function are local. They exist only while the function is 
running and it doesn't matter if they duplicate the names of other variables in the workspace. 

The other variables - those used in the body of a function but not quoted in the header, or those created 
in calculator mode - are called global variables. 

In the SD example above, X was named in the header so X is a local variable. If another X already exists 

in the workspace, there will be no problem. When SD is called, the X local to SD will be set up and will 

be the one used. The other X will take second place till the function has been executed - and of course, 

its value won't be affected by anything done to the local X. The process whereby a local name 

overrides a global name is known as 'shadowing'. 

It is obviously convenient to use local variables in a function. It means that if you decide to make use 

of a function written some time before, you do not have to worry about the variable names it uses 
duplicating names already in the workspace. 

But to go back to the SD example. Only X is quoted in the header, so only X is local. It uses a number 

of other variables, including one called SUM. If you already had a variable called SUM in the workspace, 
running SD would change its value. 



APLX Language Manual  58 

  

You can 'localize' any variable used in a function by putting a semicolon at the end of the function 
header and typing the variable name after it: 

 
      ħUF"Z=UWO 

You may wonder what happens if functions that call each other use duplicate local variable names. 

You can think of the functions as forming a stack with the one currently running at the top, the one 

that called it next down, and so on. A reference to a local variable name applies to the variable used by 
the function currently at the top of the stack. 

Comments in functions 

If you want to include comments in a function, simply enter them, preceded by a comment ő symbol. 

 
      ħT"ģ"CX"Z 
  ]3_"ő"Vjku"hwpevkqp"hkpfu"vjg"cxgtcig"qh"uqog"pwodgtu 
  ]4_"T"ģ"*-1Z+ĔŝZ"ő"Vjg"pwodgtu"ctg"kp"Z 
      ħ 

There are two comments in the example above. Note that the one on line 2 doesn't start at the 

beginning of a line. 

Locked functions 

It is possible to lock a function. A locked function can only be run. You can not edit it or list the 

statements it consists of. To lock a function, edit it in the Del editor but type a Ř rather than a ħ to enter 
or leave function definition mode. 

A locked function cannot be unlocked. 

Localized functions 

Local functions cannot be edited by the standard ħ editor, and the ħ editor will always refer to a global 
function of the same name (if it exists). ŢET may be used to examine local functions. 

Ambivalent functions 

All dyadic functions may be used monadically. If used monadically, the left argument is undefined 

(i.e. has a Name Classification, ŢPE of 0). This type of function is known as an ambivalent or nomadic 
function, and will usually start by testing for the existence of the left argument. 

 
             ħTģC"PQOCFKE"D 
       ]3_"<Kh"2?ŢPE")C)""""""""ő"FQGU"C"GZKUVA 
       ]4_"""Cģ7""""""""""""""""ő"PQ."UQ"YG"JCXG"DGGP"WUGF"OQPCFKECNN[ 
       [3] :EndIf  
           etc.  



APLX Language Manual  59 

  

User-defined Operators 

 
 

An 'operator' modifies the behaviour of a primitive or user-defined function. It has an operand or 

operands that are primitive, derived or user-defined functions or data. The result of using an operator 

is known as a derived function which can then be applied monadically or dyadically to data or 
alternatively it may be, in turn, used as an argument to another operator. 

As well as the primitive (built-in) operators, user-defined operators are permitted. These are created an 

edited in the same way as user-defined functions (using the ħ editor, or )EDIT ), but are distinguished 
from functions by the format of the header, line 0. 

Header line for user-defined operators  

The format for an operator header follows one of the following forms, where LO=Left operand, 
RO=Right operand, A=Left argument, B=Right argument: 

 
             Tģ*NQ"QRGTCVQT+"D""""""""""*Oqpcfke"qrgtcvqt"ykvj"qpg"ctiwogpv+ 
or  
             TģC"*NQ"QRGTCVQT+"D""""""""*Oqpcfke"qrgtcvqt"ykvj"vyq"ctiwogpvu+ 
or  
             Tģ*NQ"QRGTCVQT"TQ+"D"""""""*F{cfic operator with one argument)  
or  
             TģC"*NQ"QRGTCVQT"TQ+"D"""""*F{cfke"qrgtcvqt"ykvj"vyq"ctiwogpvu+ 

User-defined operators need not return explicit results. 

Example 

This simple monadic operator with two arguments COMMUTE reverses the arguments of a function. In 

this example, FN represents the function (the left operand) which will be combined with the operator to 

make a derived function, L represents the left argument supplied to the derived function, and R 
represents the right argument supplied to the derived function: 

 
      ħ\ģN"*HP"EQOOWVG+"T 
]3_""ő"Qrgtcvqt"yjkej"tgxgtugu"vjg"ctiwogpvu"vq"c"f{cfke"hwpevkqp 
]4_"""\ģT"HP"N 
      ħ"" 
       
      100 ÷ 3  
33.33333333  
      322"Ĕ"EQOOWVG"5"""""""ő"Gswkxcngpv"vq"5"Ĕ"322 
0.03  
      322"ŝ"EQOOWVG"5"""""""ő"Gswkxcngpv"vq"5"ŝ"322 
100  100 100  
      322"ŢFT"EQOOWVG"3"""""ő"Gswkxcngpv"vq"3"ŢFT"322 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0  



APLX Language Manual  60 

  

Using data as operands 

The left and/or right operands to a user-defined operator do not have to be functions; they can 

alternatively be arrays. The effect is to substitute the supplied array for in expression which references 
the operand:  

 
      'FRUIT' ('OLD' COMMUTE) 'HELLO'  
HELLO OLD FRUIT  



APLX Language Manual  61 

  

Classes and Objects 

 
 

Overview of Classes and Objects 

As well as traditional APL functions and operators, APLX adds object-oriented programming facilities 

to the core APL language. These facilities are broadly similar to those implemented in other object-

oriented programming languages (such as C++, C#, Java, or Ruby), but with the difference that APL's 

array-programming approach applies to classes and objects in the same way as it applies to ordinary 

data. 

The fundamental building block for object-oriented programming in APLX Version 4 is the class. For 

example, in a commercial invoicing application, a given class might represent the attributes and 

behavior of an Invoice, and another class might represent a CreditNote. In an application concerned 

with geometry, a class might represent a Sphere, or a Rectangle, or a Polygon. A class contains 

definitions both for program logic (functions and operators, known collectively as the methods of the 

class), and for data (named variables associated with the class, known as properties). The term 
members is used to describe both the properties and methods of a class. 

In most cases, when you come to use a class, you need to create an instance of that class, also known 

as an object. Whereas the class represents an abstraction of (say) an Invoice, or a Sphere, or a 

Rectangle, an object represents a particular invoice, sphere or rectangle. Typically, you may have 

many instances of a given class, each containing independent copies of data (properties), but all 

supporting the same program logic (methods). 

Inheritance 

When you define a class, you can specify that it inherits from another class. The new class is said to 

be the child, and the class it inherits from is the parent or base class. Inheritance means that (unless 

you explicitly change their definition), all of the properties and methods defined in the parent class are 

also available in the child class. This works for further levels of inheritance as well, so that methods 

and properties can be inherited from the immediate parent, or from the parent's parent, and so on. The 

terms derived classes or descendants are sometimes used to denote the children of a class, and the 

children's children, and so on. Similarly, the term ancestors of a class is used to denote the parent, 
parent's parent, and so on. 

For example, you might have a class Shape, representing an abstract geometric shape. This might have 
properties called 'X' and 'Y' giving the center point of the shape, and methods called 'Move' and 'Area'. 

A Circle class might inherit from Shape, introducing further properties such as 'radius'. Equally, a 

class Polygon might also inherit from Shape, and further classes Triangle and Square inherit from 

Polygon. All of the classes Circle, Polygon, Triangle and Square are derived from Shape. Because of 

the way inheritance works, they would all include the properties X and Y, and the methods Move and 
Area. 



APLX Language Manual  62 

  

When a class inherits from another, you can specify that the definition of a given method of the parent 

(or the initial value of a property) is different in the child class. In our example, you would need to 

supply a different definition of the Area method for a Circle and a Square. This is known as overriding 
the method.  

For classes defined in APLX, all methods can be overridden, and all methods are virtual, that is to say 

if method A in a base class calls another method B, and the second method B is overridden in a child 

class, then running method A in the child class will cause the overridden version of B to be called, not 
the version of B defined in the parent. 

APLX uses an inheritance model known as single inheritance. This means that a child class can be 

derived from only one parent (which may itself derive from another class, and so on). However, 

APLX also allows you to 'mix-in' one or more other classes (including external classes, such as those 

written in .Net or Java) into your objects at runtime. This is a very flexible feature which can be used 

in much the same way as multiple inheritance is used in some other languages. See the section on 
Mixins for more details. 

User-defined, System and External classes 

APLX supports the following types of class:  

¶ User-defined classes, written in APL (also known as 'Internal' or just 'APL' classes) 

¶ System classes, which are built-in to the APLX interpreter in the same way as System 

functions. System classes are currently used mainly for user-interface programming, and 

replace the older ŢYK syntax. 

¶ External classes, written in other languages, such as Java or C#. 

Object References and Class References 

When you create an object, i.e. an instance of a class (using the system function ŢPGY as described 

below), the explicit result that is returned is not the object itself, but a reference to the object. This 

reference is held internally as just a number, an index into a table of objects which APLX maintains in 

the workspace. If you assign the reference to another variable, the object itself is not copied; instead, 
you have two references to the same object. 

Of course, because APLX is an array language, you can have arrays of object references, and you can 

embed object references in nested arrays along with other data. For example, you might have an array 
containing references to hundreds of Rectangle objects. 

You can also have a reference to a Class. This makes it possible for general functions to act on classes 
without knowing in advance which class applies. 

Creating objects (instances of classes) 

The system function ŢPGY is the principal means by which you create an object, i.e. an instance of a 

class. The class can be either written in APL (an internal or user-defined class), or a built-in System 

class, or a class written in an external environment such as .Net, Java or Ruby (an external class). ŢPGY 



APLX Language Manual  63 

  

creates a new instance of the class, runs any constructor defined for the class, and returns a reference 
to the new object as its explicit result. 

The class is specified as the right argument (or first element of the right argument). It can be specified 

either as a class reference, or as a class name (i.e. a character vector). Any parameters to be passed to 

the constructor of the class (the method which is run automatically when a class is created) follow the 
class name or reference. 

If you specify the class by name, you also need to identify in the left argument the environment where 
the class exists, unless it is internal. 

Creating instances of internal (user-defined) classes 

Normally, you create an instance of a user-defined class by passing the class reference directly as the 

right argument (or first element of the right argument). For example, if you have a class called Invoice, 
you can create an instance of it by entering: 

 
     I ģŢPGY"Kpxqkeg 

What is really happening here is that the symbol Invoice refers to the class definition, and when it is 

used in this way, it returns a reference to the class. 

Note that you can also pass the class name rather than a class reference. The following are alternative 
ways of creating an instance of a user-defined class: 

 
      KģŢPGY")Kpxqkeg) 
      Kģ)crn)"ŢPGY")Kpxqkeg) 

Passing arguments to the constructor 

A constructor is a special method of a class, which is run automatically when the class is created using 

ŢPGY, and is used to initialize the class. For APL classes, the constructor is a method whose name is 

the same as the name of the class. It should be a function which takes a right argument, and does not 

return a result. (It can be a method which takes no argument, if you are sure that no parameters will 

ever be passed to it via ŢPGY). Any arguments to the constructor can be provided as extra elements on 

the right argument of ŢPGY. When the constructor is run, these extra elements are passed as the right 

argument to the constructor. If there are no extra elements, an empty vector is passed as the right 
argument to the constructor. 

For example, suppose the class Invoice looks like this: 

 
Invoice {  
  TimeStamp  
  Account  
  InvNumber  
  }Ugtkcnģ2  
 
 ħKpxqkeg"D 
  ő Constructor for class Invoice.  B is the account number  
  CeeqwpvģD 
  VkogUvcorģŢVU 



APLX Language Manual  64 

  

  UgtkcnģUgtkcn-3 
  KpxPwodgtģUgtkcn 
 ħ 
}  

This is a class which has a constructor and four properties. One of the properties (Serial) is a class-

wide property, which means it has only a single value shared between all instances of the class. When 

a new instance of this class is created, the constructor will be run. It will store the account number 

(passed as an argument to ŢPGY) in the property Account, and store the current time stamp in the 

property TimeStamp. It will then increment the class-wide property Serial (common to all instances of 

this class), and store the result in the property InvNumber. (To see the properties, we use the system 
method ŢFU which summarizes the property values): 

 
      UģŢPGY"Kpxqkeg"45755 
      U0ŢFU 
Account=23533, TimeStamp=2007 10 11 15 47 34 848, InvNumber=1  
      VģŢPGY"Kpxqkeg"89766 
      V0ŢFU 
Account=67544, TimeStamp=2007 10 11 15 48 11 773, InvNumber=2  

Default display of a class or object reference 

When you call the ŢPGY system function to create an object (an instance of a class), the explicit result 

is a reference to that object. The question therefore arises: what happens if you display such an object 
reference? 

By default, APLX displays an object reference as the unqualified class name contained in square 

brackets. Class references are displayed as the class name in curly braces:  

 
      )CLASSES 
Swgwg"""""""""""""""""""""ő"Wugt- defined APL class  
      Queue 
{Queue}                   ő Default display of class reference  
      SWGWG45ģŢPGY"Swgwg" 
      SWGWG45"""""""""""""ő"Fghcwnv"fkurnc{"qh"CRN"qdlgev"tghgtgpeg 
[Queue]  

However, if the APL programmer wishes to override the default display form of an object, this can 
easily be done by using the ŢFH system method (see the section on system methods below): 

 
      SWGWG450ŢFH")Ejgemqwv"Swgwg45) 
 
      QUEUE23 
Checkout Queue23  

Object references and object lifetimes 

When you use ŢPGY to create a new object, that object persists until there are no more references to it 

in the workspace. It is then deleted immediately, if it is an internal or system object. If it is an external 

object, such as an instance of a .Net class, the fact that there are no more references to it in the APL 

workspace means that it available for deletion by the external environment (unless the external 

environment itself has further references to the same object). However, in typical external 
environments such as .Net, Java and Ruby, the actual deletion of the object may not occur until later. 



APLX Language Manual  65 

  

Consider this sequence, where we create an instance of a class called Philosopher which has a property 
Name: 

 
      CģŢPGY"Rjknquqrjgt 
      C0Pcogģ)Ctkuvqvng) 

At this point, we have created a new instance of the class, and we have a single reference to it, in the 
variable A. We now copy the reference (not the object itself) to a variable B: 

 
      DģC 
      B.Name 
Aristotle  

We now have two references to the same object. So if we change a property of the object, the change 
is visible through either reference - they refer to the same thing: 

 
      D0Pcogģ)Uqetcvgu) 
      A.Name 
Socrates  

Now we erase one of the references: 

 
      )ERASE A  

We still have a second reference to the object. The object will persist until we delete the last reference 
to it: 

 
      B.Name 
Socrates  
      )ERASE B  

At this point, there are no more references to the object left in the workspace, and the object itself is 
deleted. 

It follows from this that, if you use ŢPGY to create an object, and do not assign the result to a variable, 

it will immediately be deleted again. In this example, we create an instance of the class Philosopher. 

The explicit result of ŢPGY is a temporary workspace entry (of type object reference), which is 

displayed using the default display format for objects, and then deleted. At that point the object itself 
is also deleted, as there are no references left: 

 
     ŢNEW Philosopher  
[Philosopher]  

The Null object 

As its name implies, the Null object is a special case of an object, which has no properties and no 

methods of its own (although System methods may apply to it). A reference to the Null object displays 
in the special form: 

 
[NULL OBJECT]  

A reference to the Null object can arise for a number of different reasons: 



APLX Language Manual  66 

  

¶ If you have an array of object references, the prototype of the array is a reference to the Null 

object. For example: 

¶  
¶       VECģŢPGY"ÅTgevcping"Urjgtg"Vtkcping 
¶       VEC 
¶ [Rectangle] [Sphere] [Triangle]  
¶       3Ĥ5ĦXGE 

[NULL OBJECT]  

¶ An external call may return a Null object, for example if you are looping through a linked list 

of objects and reach the last one. 

¶ An APLX System method may return a Null object, for example if you ask for the parent class 

of a top-level class: 

¶  
¶      Rqkpv0ŢRCTGPV 

[NULL OBJECT]  

¶ Your application code can deliberately set an object reference to Null (by calling ŢPWNN), for 
example to indicate that it has not yet been initialized. 

¶ APLX may be forced to set an object reference to Null, because it is no longer valid. For 

example, this will happen if you )SAVE a workspace which contains a reference to an external 

object (e.g. a Java or .NET object). On re-loading the workspace at a later date, the object 
reference is no longer valid since the external object no longer exists. 

Types of Property 

When you define a class, you specify the names of the properties of that class, which can be used to 

hold data associated with the class. You can optionally specify a default value for the property, that is 

the value which the property will have in a newly-created instance of the class. You can also specify 
that the property is read-only, which means it is not possible to assign a new value to it. 

Most properties are instance properties, which means that each instance of the class has a separate 

copy of the property (for example, the X and Y position of a Shape). Occasionally, however, it is 

useful to define a class-wide property (known in some other languages as a static or shared property). 

This is a property where there is a single copy of the data, shared between all instances. This is useful 
for cases such as keeping a unique incrementing serial number (the next invoice number, for example). 

Combining these concepts, you have the following main types of property: 

¶ A read-write instance property, with a default value specified in the class definition 

¶ A read-write instance property, with no default value specified in the class definition 

¶ A read-write class-wide property, with a default value specified in the class definition 

¶ A read-write class-wide property, with no default value specified in the class definition 

¶ A read-only class-wide property, with a default value specified in the class definition 



APLX Language Manual  67 

  

You can also in principle have a read-only property with no initial value, but this is not very useful! 

You can also have a read-only instance property, but this is indistinguishable from a read-only class-
wide property because you can't assign a different value to it in different instances. 

Implementation note: APLX uses a 'create-on-write' approach when you assign to an instance 

property. This means that, if you have never changed the value of a property for a particular instance 

since the instance was first created, the value which is returned when you read the property is the 

default value stored in the class definition. It follows that, if you change the class definition so that the 

property has a different default value, the change will immediately be reflected in all instances of the 
class, unless the property has been modified for that instance. 

Name scope, and Public versus Private members 

The members of a class (i.e its properties and methods) can be either public or private. Public 

members can be accessed from outside the class, whereas private members can only be accessed from 

within methods defined in the class (or from desk calculator mode, if a method has been interrupted 

because of an error or interrupt and the method is on the )SI  stack). Private members can also be 

accessed by methods defined in a child (derived) class. If you are familiar with other object-oriented 

languages such as C++ or Visual Basic, this means that private methods in APLX correspond to 
'protected' methods in those languages. 

If you want to access a public member of an object from outside the class (i.e. not within a method of 

the class), then you use dot notation to refer to it. This takes the form ObjectReference.MemberName. 

For example, suppose you have a variable myrect  which is a reference to an object of class 

Rectangle . You could call the Move method and access the X and Y properties for that object as 
follows: 

 
      o{tgev0Zģ67 
      o{tgev0[ģ9: 
      myrect.Move 17 6  
      myrect.X  
62 
      myrect.Y  
84 

Within the methods of the class itself, you do not normally need to use dot notation. This is because 

the search order for symbols encountered when executing a method is as follows: 

1. First, APLX looks to see if the symbol refers to a member defined in the class of the object. 

2. If not, it looks to see if the member is defined in the parent class (if any), iterating through each 

of the ancestors in turn. 

3. If it is not found in any of the ancestors, it then looks in the local variables of the method. 

4. Finally, it looks in the global symbol table. 

Thus, a simple implementation of the Move method above (defined in the Shape class from which 
Rectangle derives) might be something like this: 

 
 



APLX Language Manual  68 

  

   ħ"Oqxg"D 
]3_""ő"Oqxg"ujcrg"d{"coqwpv"D"urgekhkgf"cu"ejcpig"vq"Z, Y  
]4_""*Z"[+ģ*Z.[+-D 
   ħ 

Constructors 

As we saw earlier, a constructor is a special type of method, which is run automatically when an 

instance of a class is created using ŢPGY. It can be used to initialize the object, optionally using 

parameters passed to ŢPGY. For example, you might use this mechanism to specify the initial position 
of a Rectangle object. 

For a user-defined class, a constructor is defined as a method which takes a right argument, and which 
has the same name as the class itself. 

In some other object-oriented programming languages, constructors are a very important part of the 

language because they are the only way of initializing property values. For user-defined classes in 
APLX, default values can be set up in the class definition, so constructors are not always needed. 

Where a class inherits from another class, the constructor which gets run automatically is that of the 

class itself (if it has a constructor), or of the first ancestor class which has a constructor. Normally, in a 

constructor, you will want to do some initialization specific to the class itself, and also call the 

constructor of the parent class (using ŢRCTGPV) to do any initialization which it and its ancestors 

require. You can do this at any point in the constructor; there is no restriction on where you make this 
call to the parent's constructor; indeed, you don't have to call it at all if it is not appropriate. 

In APLX, a constructor is also a perfectly ordinary method; it can be called in the normal way by one 

of the other methods in the class, or from outside (if it declared as Public). This can be useful for re-
initializing an object. 

Some object-oriented languages also include a special method called a destructor, which is called just 

before the object is deleted. APLX user-defined classes do not have destructors. This means that, if 

you need to release system resources (for example, close a file or a database connection), you need to 

call a method to do that explicitly before erasing the last reference to the internal object. However, 

APLX will automatically take care of deleting all the properties of the object, and releasing the 
memory back to the workspace. 

Using Classes without Instances 

So far, we have concentrated on using objects as instances of classes. However, classes can also be 

very useful in their own right, without the need to make instances of them. There are two major 
reasons why you might want to define a class which can be used directly: 

Defining a set of constants 

If you define a class with a set of read-only properties, those properties can be used as a set of constant 

values or 'enumerations'. For example, you might have a class called Messages, which holds all the 
messages which your application displays to the user: 

 



APLX Language Manual  69 

  

Messages {  
OutOfMemory ģģ)Vjgtg"ku"pqv"gpqwij"ogoqt{"vq"eqpvkpwg) 
CumOqfgnPcogģģ)Gpvgt"vjg"pcog"qh"vjg"oqfgn) 
QrEqorngvgģģ)Qrgtcvkqp"Eqorngvg) 
CumTgugvģģ)Fq"{qw"ycpv"vq"tgugv"vjg"oqfgnA) 
...etc  
}  

You can then use this class in your application (without having to make an instance of it) to 

encapsulate all the messages and refer to them by name: 

 
      ħTģEjgemYU 
]3_"""<Kh"TģŢYC>OKPaHTGGaYU 
[2]     ShowError Messages.OutOfMemory  
[3]   :EndIf  
      ħ 

This keeps all the messages together in one place, allows you to refer to them by a name which is easy 

to remember and is self-documenting, but does not pollute the global symbol space with hundreds of 
APL variables.  

Keeping namespaces tidy 

In traditional APL systems, it often used to be the case the number of global functions was very large. 
By placing related functions in a class, the workspace can be kept tidy. 

For example, in a statistical application, you might have a class Average  which contained methods for 

calculating many different types of average (Mean, Median , Mode etc). As long as these methods do not 

write to any property of the class, there is no need to make an instance of the class to run them; you 

can just run them using dot notation as Average.Mean , Average.Median  etc. 

Note that, in APLX classes, there is no pre-determined difference between a method which can only 

be run inside an instance (sometimes known as an instance method), and a method which can be run as 

a class member without an instance being created (sometimes known as a static method). The only 

difference is that, at run time, if a method writes to a property, an error will be generated if there is no 
instance to write to. 

However, you do need to be aware of the difference between static and instance methods when using 
classes written in other languages such as Java or C#. See the system function ŢECNN for more details. 

Editing User-Defined Classes 

You can create and edit user-defined classes in a number of ways: 

¶ Using the on-screen class editor, invoked from the Edit menu or )EDIT . The class editor allows 

you to edit each method of the class, as well as set up properties and default values; 

¶ Using the line ('del') editor; 

¶ Using the system function ŢHZ, to convert a text representation into a class; 



APLX Language Manual  70 

  

¶ Using the system function ŢKE, to transfer global functions, operators and variables into the 

class as methods and properties. 



APLX Language Manual  71 

  

Mixins 

 
 

What are Mixins? 

As we saw in the previous sections, classes which you write in APLX can inherit from other classes; 

this means that the methods and properties of the parent class (or classes) are available in the child 
class. 

Although the concept of inheritance is very powerful, there are some circumstances where more 

flexibility is required. In APLX, a class cannot inherit from multiple different classes, only from one 

parent class (although that might itself inherit from its parent, and so on). Nor can a class inherit from 

an external class; for example, you cannot write an APL class which directly inherits from a Java 
class.  

'Mixins' address both of these requirements. They allow you to extend your user-defined classes so 

that, at run-time, they dynamically 'mix in' functionality (i.e. methods and properties, and perhaps 

events) from one or more other classes; these can be internal (user-defined, and written in APL), or 
external (.Net, Java, Ruby etc, or a built-in APLX system class). 

Because mixins are attached dynamically at runtime, they are very flexible. For example, in a 

commercial application you might have an Invoice  class (which perhaps inherits from an 

AccountingDocument  class). If you wanted to add functionality which would allow the Invoice  class 

to be faxed or e-mailed to the client, you could dynamically (at run time) mix-in a Fax  or EMail  class 

to handle the transmission of the document. This is similar to multiple inheritance as implemented in 

some other languages, but more flexible because you don't need to know in advance which mixin will 
be required; different instances of the same class can, if appropriate, mix-in different classes. 

When you 'mix-in' another class, what effectively happens is that a new object of the mixed-in class is 

created, and merged into the original object. The public properties and methods of the mixed-in class 

now become available in the original object, very much as though they were defined in the original 
class. 

You can mix-in as many other classes as you like; you can even mix in classes from multiple different 

architectures. For example, you could write (in APL) a FinancialClock  class to display the time in 

London, New York and Singapore. It could mix-in the System Class Window for the display, and the 

Java class timeZone  to handle the different time-zone information. 

Using Mixins 

To use mix-ins, you first create an object (i.e., an instance of your APL class) in the normal way using 

ŢPGY. You then use the System Method ŢOKZKP to mix another class into the object. ŢOKZKP has a 

similar syntax to ŢPGY; the right argument is the class reference (or name, as a text vector), followed 

by any arguments to the constructor for the class you are mixing-in. The left argument can be omitted 

if you are mixing-in an APL class, otherwise it defines the architecture for the mix-in. For example, if 



APLX Language Manual  72 

  

you have a class called Invoice , and another class called Fax , you can mix the Fax  class into an 

Invoice  object as follows: 

Create an instance of Invoice: 

 
      inv ģŢpgy")Kpxqkeg) 
      ő Properties:  
      kpx0Ţpn"4 
customer  
invoice_number  
lines  
order_number  
      ő Methods:  
      kpx0Ţpn"5 
SetStatus  

Mix class Fax into the Invoice object: 

 
      kpx0Ţokzkp")Hcz) 
 
      ő Properties and methods now include those of Fa x class:  
      kpx0Ţpn"4 
eqxgtarcig"""""""""ő">---  From Fax class  
customer  
hczapwodgt"""""""""ő">---  From Fax class  
invoice_number  
lines  
order_number  
 
      kpx0Ţpn"5 
Ugpf"""""""""""""""ő">---  From Fax class  
SetStatus  

You can mix-in further classes in the same way.  

Although in this example we have mixed-in the Fax class (using dot notation) after creating the 

original object, in many cases the natural place to do this will be in the Constructor of the original 

class. If you do that, the mix-in facility effectively becomes like multiple inheritance in some other 
languages. 

Mixing -in an external class 

You can mix an external class (.Net. Java, Ruby, or a built-in APLX system class) in to your APL 

class in the same way. In this case, you need to provide a left argument to ŢOKZKP to specify the 

architecture, in the same way as you would with ŢPGY. For example, we could add a second mixin, 

based on a Java class, to the Invoice  class shown in the example above. All the properties and 
methods of the Java class then become available in the object: 

 
      )lcxc)"kpx0Ţokzkp")lcxc0wvkn0Fcvg) 
      Ţdqz"kpx0Ţpn"5 
Send SetStatus UTC after before clone compareTo equals getClass getDate getDay  
      getHours getMinutes getMonth getSeconds getTime getTimezoneOffset getYear  
      hashCode notify notifyAll parse setDate setHours setMinutes setMonth  
      setSeconds setTime setYear toGMTString toLocaleString toString wait  
 



APLX Language Manual  73 

  

      inv.toLocaleString  
20- Mar- 2009 11:43:03  

Referencing the mixed-in object directly 

Sometimes you may need to access the underlying object which has been merged into your APL 
object. For this, you need a reference to the underlying object. You can get this in two ways: 

(1) ŢOKZKP actually returns as an explicit result the underlying object reference (but with display 

potential switched off, as a 'shy' result). So you can assign this to a variable or property of your APL 
class, and use this to call the underlying object directly: 

 
      lfģ)lcxc)"kpx0Ţokzkp")lcxc0wvkn0Fcvg) 
      lf0Ţencuupcog 
java:java.util.Date  

(2) You can use the system method ŢOKZKPU to get a vector of references to the mixins: 

 
      o{aokzkpuģkpx0Ţokzkpu 
      my_mixins  
[Fax] [java:Date]  
      my_mixins[ 4_0Ţencuupcog 
java:java.util.Date  

Search order and over-riding a method 

When a member of the class is referenced (either using dot notation, or as unadorned symbols when 

running methods of the class), APLX will use the following search order to find the named symbol: 

¶ First it will search the original class, (and its parent classes, if any)  

¶ Then it will search in the first mixin (and its parent classes, if any)  

¶ If there are further mixins, it will search these in the order in which they were mixed-in.  

It follows from this that you can 'over-ride' a property or method from a mixed-in class; if your own 

APL class defines a member of the same name as a member of the mixed-in class, the APL version 
will be the one which is accessed; the mixed-in version will be hidden. 

However, you can still call the mixed-in version by accessing it directly using the object reference 

returned either when it is created (explicit result of ŢOKZKP), or from ŢOKZKPU. In our example, you 

could define a method toString , which overrides the Java version, but calls it to get the date as text: 

 
      ħtģvqUvtkpi 
]3_"""ő"Uvtkpi"tgrtgugpvkpi"kpxqkeg 
]4_"""tģ)Kpxqkeg"pwodgt").*Ŏkpxqkegapwodgt+.)"fcvgf").kpx0Ţokzkpu]4_0vqUvtkpi 
]5_"""ħ 
 
      ő Insert toString as a method into class Invoice :  
      )Kpxqkeg)"Ţke")vqUvtkpi)""""" 
1 
      inv.toString  
Invoice number 11345301 dated Fri Mar 20 11:57:32 GMT 2009  



APLX Language Manual  74 

  

Removing mixins from an object 

The System Method ŢWPOKZ can be used to remove one or more mixins from an object. It takes a right 

argument which is a scalar or vector list of mixin-references to delete, and returns a binary vector with 
1 for each mixin removed, and 0 if the mixin reference could not be found: 

 
      kpx0Ţokzkpu 
[Fax] [java:Date]  
      kpx0Ţwpokz"kpx0Ţokzkpu 
1 1  
      kpx0Ţokxins  
      
      kpx0Ţpn"5 
SetStatus  
toString  

Note that you don't normally need to do this; the mixins will be deleted automatically when the object 
which owns them is deleted. 



APLX Language Manual  75 

  

Branching and labels 

 
 

Traditionally, the APL right arrow 'ĥ' has been used to control execution in user-defined functions and 

operators. It can be used as a conditional or unconditional branch, and thus allows conditional 

execution and loops to be programmed. (Note that APLX alternatively allows you to control execution 
using structured-control keywords, which are preferable in many contexts). 

The symbol ĥ is usually followed by an integer scalar, vector, or label name which identifies the line 

to branch to. If the argument is a vector, the first element of the vector determines the line at which 

execution will continue, and subsequent elements are ignored. If the line number does not exist, the 

function terminates (often a line number of 0 is used for this purpose). If the argument is an empty 

vector, no branch is taken and execution continues at the next statement. Thus, conditional branches 

can be programmed by using a right argument which, at run-time, evaluates either to an integer 
scalar/vector, or to an empty vector. 

A label is a name which is followed by a colon. It is placed at the start of the line which it identifies it. 

When the function is running, it is treated as a local variable whose value is the number of the line on 
which it is placed. It can thus be used directly as the argument of the right arrow. 

A special case arises if no argument is given to the right arrow (a 'naked branch'). This terminates 

execution of the current function and of all functions which called it, removes them from the state 

indicator, and returns to desk-calculator mode. If the APL interpreter is already in desk-calculator 

mode, this will have the effect of removing the top function and all thouse down to the next function 
marked with an asterisk in the )SI  display. A naked branch can also be used to end Ţ input. 

Examples: 

To branch back from line 10 to line 3: 

 
      ]32_"ĥ5" 

To branch unconditionally to a line labelled LAB2: 

 
      ]32_"ĥNCD4" 
      [11] ...  
      ]34_"NCD4<VQVCNģSV[ôRTKEG 

To branch to a line labelled LAB2 only if LOOP has the value 10, by using an expression which 
evaluates to an empty vector if the condition is not true or to the label value if it is true: 

 
      ]32_"ĥ*NQQR?32+1NCD4" 
      [11] ...  
      ]34_"NCD4<VQVCNģSV[ôRTKEG 

To branch to one of several lines depending on the value of the variable INDEX: 

 
      ]8_"ĥ*ECUG3"ECUG4"ECUG5+]KPFGZ_" 



APLX Language Manual  76 

  

To branch to one of several lines using a boolean vector to select which (execution will continue at the 

label corresponding to the first 1 in the vector. If there is none, a message will be displayed and the 
function will end):  

 
      ]8_"ĥUGNGEV1*ECUG3"ECUG4"ECUG5+"ļ")Pq"ecug"crrnkgu)"ļ"ĥ2 



APLX Language Manual  77 

  

Control Structures 

 
 

As well as the conventional branch arrow, APLX supports structured-control keywords for flow 
control, often making for more readable functions. 

The structured control keywords are not part of the International Standards Organisation (ISO) 

specification of the APL language, but they are supported by a number of APL implementations 
including APLX. 

The structured control keywords include: 

Function Keywords 

Conditional execution :If :OrIf :AndIf :ElseIf :Else :EndIf  

For loop :For :In :Leave :Continue :EndFor  

While loop :While :Until :Leave :Continue :EndWhile  

Repeat loop :Repeat :Until :Leave :Continue :EndRepeat  

Case selection :Select :Case :CaseList :Else :EndSelect  

Error trapping :Try :CatchIf :CatchAll :EndTry  

Terminate current function :Retur n 

Branch :GoTo  

Note: The general keyword :End  can be use in place of any of :EndIf :EndFor :EndWhile 

:EndRepeat :EndSelect :EndTry  

Using Control Structures 

The keywords all begin with a colon character, and usually appear at the start of the line (APLX will 

automatically indent lines within a block for you). For example: 

 
     ħKVGTCVG"P 
[1]   :If N<0  
[2]     'Negative argument not supported'  
[3]     :Return  
[4]   :EndIf  
[5]   ...  

You can also place a block on a single diamond-delimited line:  

 
     ħKVGTATE N 
]3_"""<Kh"P>2"ļ")Pgicvkxg"ctiwogpv"pqv"uwrrqtvgf)"ļ"<Tgvwtp"ļ"<GpfKh" 
[2]   ...  

Multi -line sequences can be nested to any depth, but single-line sequences cannot contain further 

nested control structures. Note: The single-line form cannot be used with :Try..:EndTry . 



APLX Language Manual  78 

  

The APLX function editor prompts you with the correct indentation as you type. If you cut or paste 

lines, you can clean up the indentation from the Edit menu (or press Ctrl-I in Windows, Cmd-I under 
MacOS) 

The supported set of structured-control phrases is as follows (items in square brackets are optional). 

You can end any sequence with :End  rather than the more specific ending keyword shown. Note that 

in APLX, structured-control keywords are not case-sensitive when you enter them, but APLX will re-
display them in the case shown. 

Conditional execution 

Syntax: 

:If <boolean expression>  

...  

[:ElseIf <boolean expression> ]  

...  

[:Else]  

...  

:EndIf   

The expression following the :If  keyword is evaluated. If it is true, the block which follows it is 

executed, until an :ElseIf , :Else , :End  or :EndIf  is encountered, at which point execution transfers 

to the statement after the :End  or :EndIf . If the expression is false, the same procedure is followed for 

any :ElseIf  blocks in the sequence. If none of the tests is true, the :Else  block (if any) is executed. It 

is permissible to have as many :ElseIf  sections as you like. 

For example, this function returns a string which depends on the value of B: 

 
      ħTģENCUUKH["D 
[1]   :If B=0  
]4_"""""Tģ)\gtq) 
[3]   :El seIf B>0  
]6_"""""Tģ)Rqukvkxg) 
[5]   :Else  
]8_"""""Tģ)Pgicvkxg) 
[7]   :End  
      ħ 

You can also add :AndIf  or :OrIf  phrases after an :If  or :ElseIf  phrase. If you use :AndIf , each 

expression must be true for the block to be executed, whereas if you use :OrI f  only one of them needs 

to be true. (The :AndIf  and :OrIf  conditional expressions are evaluated only if necessary). For 

example: 

      ħTģC"ENCUUKH["D 
[1]   :If B=0  
[2]   :AndIf A=0  
]5_"""""Tģ)Dqvj"ctiwogpvu"ctg"|gtq) 
[4]   :ElseIf B=0  
[5]   :OrIf A=0  
[6]      Tģ)Qpg"ctiwogpv"ku"|gtq) 
[7]   :Else  
]:_"""""Tģ)Pgkvjgt"ctiwogpv"ku"|gtq) 
[9]   :End  
      ħ 



APLX Language Manual  79 

  

For loop 

Syntax: 

:For <control variable name>  :In <vector expression>  

...  

:EndFor   

The control variable is assigned successive values from the vector expression and the loop is executed 

once for each value. The values can be of any type, not just integers. The vector expression is 
evaluated only once, at the start of the loop. For example: 

 
      <Hqt"Y"<Kp"$Kv)u$"$Qhh$"$Vq$"$Yqtm$"ļ")JkJq)"Y"ļ"<GpfHqt" 
 HiHo I t's  
 HiHo Off  
 HiHo To  
 HiHo Work  

You can use the :Continue  keyword within the loop to force premature termination of a particular 

iteration - execution continues at the top of the loop with the next value (if there is one). You can also 

use the :Leave  keyword to exit the loop completely and continue execution with the line after the 

:EndFor . 

While loop 

Syntax: 

:While <boolean expression>  

...  

:EndWhile   

If the boolean expression is true (value 1), the loop body is executed. At the end, control returns to the 

:While  statement and the loop is re-executed as long as the boolean expression remains true. 

 
      ħGxcnwcvg"D 
[1]   :While B>0  
]4_"""""DģPgzvPqfg"D 
[3]   :EndWhile  
      ħ 

An alternative form allows a test at the end of the loop as well: 

Syntax: 

:While  <boolean expression>   

...  

:Until <boolean expression>   

The :Continue  and :Leave  keywords can again be used to force an early termination of a particular 
iteration or of the whole loop. 



APLX Language Manual  80 

  

Repeat loop 

Syntax: 

:Repeat [ <integer expression> ]  

...  

:EndRepeat   

The loop body is repeated a maximum of N times, where N is the value of the integer expression 

(evaluated only once, at the start of the loop). If the integer expression is omitted, the loop is repeated 
for ever, unless terminated in another way. For example: 

 
      <Tgrgcv"5"ļ"ŢVU"ļ"<GpfTgrgcv 
2002 7 30 14 36 2 228  
2002 7 30 14 36 2 228  
2002 7 30 14 36 2 228  

The :Continue  and :Leave  keywords can again be used to force an early termination of a particular 
iteration or of the whole loop: 

 
      ħIWGUU=XCN 
[1]   'Guess a number'  
[2]   :Repeat  
]5_"""""XCNģŢ 
[4]     :If VAL=231153  
[5]       'You were right!'  
[6]       :Leave  
[7]     :EndIf  
[8]     'Sorry, try again..'  
[9]   :EndRepeat  
      ħ" 

You can also end the loop with an :Until  statement so that execution repeats only if a boolean 
expression remains true: 

:Repeat [ <integer expression> ]  

...  

:Until <boolean expression>   

Case selection 

Syntax: 

:Select <expression>  

:Case <expression>  

...  

[:CaseList <vector expression> ]  

...  

[:Else]  

...  

:EndSelect   

The :Select  expression can be any APL scalar or array. It is matched against each of the :Case  

expressions (or elements of the :CaseList  expressions) in turn. If they match in value and shape 

(using the same rules as the APL ı (match) primitive), the body of lines following is executed, until 

the next control keyword in the sequence is reached when execution jumps to the line following the 



APLX Language Manual  81 

  

:EndSelect  (For :CaseList  the match is done against each of the elements of the vector expression 

in turn, and if any of them match then the test is regarded as true). If none of the expressions match, 

the :Else  clause (if any) is executed. For example: 

 
      ħTģENCUUKH["D=ŢKQ 
]3_"""ŢKQģ3 
[2]   :Select B  
[3]   :Case 0  
]6_"""""Tģ)Uecnct"|gtq) 
]7_"""<Ecug"3ŝ2 
]8_"""""Tģ)Ngpivj"3"xgevqt."xcnwg"2) 
]9_"""<EcugNkuv"Ŝ32 
]:_"""""Tģ)Uecnct"kp"vjg"tcpig"3"vq"32) 
[9]   :Else  
]32_""""Tģ)Pqpg"qh"vjg"cdqxg) 
[11]  :EndSelect  
      ħ 
    
    CLASSIFY 0  
Scalar zero  
    CLASSIFY 2  
Scalar in the range 1 to 10  
    ENCUUKH["3ŝ4 
None of the above  
    ENCUUKH["3ŝ2 
Length 1 vector, value 0  

Error Trapping  

Syntax: 

:Try  

...  

[:CatchIf <boolean expression> ]  

...  

[:CatchAll]  

...  

:EndTry   

The block of code following the :Try  keyword is executed, until either an error occurs, or a 

:CatchIf , :CatchAll , :End  or :EndTry  is encountered. (Unlike the other control structures, 

:Try...:EndTry  blocks cannot be placed on a single line). 

If no error has occurred within the :Try  block, execution transfers to the line after the :End  or 

:En dTry .  

If an error occurs in the :Try  block (either in the statements in this function, or in any functions called 

from it), control transfers to the first :CatchIf  line, and the expression is evaluated. If it is true, the 

block of code following the :Catc hIf  is executed, and execution then resumes after the :EndTry  or 

:End . If the expression is false, the same procedure is followed for any further :CatchIf  blocks in the 

sequence. If none of the tests is true, the :CatchAll  block (if any) is executed. It is permissible to 

have as many :CatchIf  sections as you like. 

Typically, you use the :CatchIf  statement to catch specific types of error, by looking at ŢNGT or ŢGV. 

See the section Error trapping using :Try..:EndTry for more information. 



APLX Language Manual  82 

  

Miscellaneous keywords 

The :GoTo  keyword (followed by a line label name) can be used to branch directly to a label. It is 

equivalent to using a conventional APL ĥ symbol to branch to a label. You can branch to a label inside 

the same control structure, or to a label outside the control structure, but not to a label which is more 

deeply nested than the line you are branching from. 

The :Return  keyword causes the current function execution to terminate. It is equivalent to a 

conventional APL branch to line 0. 

Named loops 

Normally the :Continue  and :Leave  keywords apply to the current loop in which they are executed, 

so that if you have a loop nested within a loop, execution resumes at the start or end of the innermost 

loop. However, you can also name loops by including a label at the start line, and follow the 

:Continue  or :Leave  with the name to apply it to a particular level of nesting. In this example, if the 

:If  clause is true, execution continues at line 9: 

 
    ħKVGTCVG=P 
[1]  OUTER: :Repeat  
[2]    :For N :In SAMPLES  
[3]      :If INTERRUPTED  
[4]        :Leave OUTER  
[5]      :EndIf  
[6]      ...  
[7]    :EndFor  
[8]  :EndRepeat  
[9]  ...  

Errors  

If there is an error in the usage of structured keywords, APLX will report a STRUCTURED CONTROL 

ERROR. This typically arises if the keywords at the beginning and end of the block do not match up 

correctly, or if you branch to a line label within a control structure without executing the initial 
keyword line at the start of the block. 

Note that APLX does not prevent you from fixing a function which is syntactically incorrect. 

However, the APLX editor will warn you of mismatched structured-control keywords if you select 
'Clean up indentation' from the Edit menu (Ctrl-I in Windows, Cmd-I under MacOS).  



APLX Language Manual  83 

  

System commands 

 
 

APLX supports a range of commands ('system commands') which are used to communicate directly 

with the system. They are not part of the APL language itself. APL system commands start with a 
right parenthesis: 

 
             )SAVE 

The display generated by a system command cannot directly be used as the argument to a function. 

However, in APLX, system commands can be executed using the ŋ (execute) primitive: 

 
             ħNKD 
      ]3_"ő"Ujqy"eqpvgpvu"qh"nkdtct{"2 
      ]4_"ŋ)+NKD) 
      ]5_"ħ 

The output from executed system commands can be captured in a variable or passed as an argument to 
a function: 

 
            Zģŋ)+U[ODQNU) 
            X 
      IS 1026, USED 21  

See the reference section on System Commands for a full list of available commands. 



APLX Language Manual  84 

  

System Functions and Variables 

 
 

APL system functions implement a wide variety of system-related or utility features. They are built-in 

to the APL interpreter, but often call out to the operating system to perform some function (such as 

reading from a database, or fetching the current date and time). They have names of one or more 
characters and start with a Ţ *ŢDQZ ŢVU ŢYU etc). 

System functions can be niladic, monadic or dyadic. 

See the reference section on System Functions and Variables for a full list. 



APLX Language Manual  85 

  

System Methods 

 
 

Just as traditional APL interpreters have system variables and system functions (whose names all 

begin with the Ţ character), system methods are pre-defined methods (also with names beginning with 
Ţ) which apply to internal user-defined object classes, and in most cases to external classes as well. 

You can call a system method exactly as you would call an ordinary method of a class, either using 

dot notation (for example O{Rqkpv0ŢENCUUPCOG), or (within a user-defined class method) by simply 

using the system method's name such as ŢENCUUPCOG (equivalent to ŢVJKU0ŢENCUUPCOG). 

System methods can be niladic, monadic or dyadic. 

See the reference section on System Methods for a full list. 



APLX Language Manual  86 

  

System Classes 

 
 

A System Class is a pre-defined class which is part of APLX. They are mostly used for user-interface 

programming. Examples are the Form, Timer , ChooseColor  and Chart  classes. (In previous versions 

of APLX, these classes were accessed through ŢYK. Although you can continue to use ŢYK, you may 
find the new class-based syntax more readable and more consistent.) 

To create an instance of a top-level System class (such as a Form or a pre-defined dialog), you provide 

the name of the class as the right argument to ŢPGY, and use )Ţ) as the left argument to indicate that 
this is a System class: 

 
      FNIģ)Ţ)"ŢPGY")EjqqugEqnqt) 
      FNI0ŢPN"5 
Close  
Create  
Delete  
New 
Open 
Send 
Set  
Show 
Trigger  

You can then use dot notation to access the properties and methods of the object: 

 
      FNI0eqnqtģ456"45"78 
      DLG.Show 
1 

See the separate manual on System Classes and User-Interface Programming for more details. 



APLX Language Manual  87 

  

Files and Databases 

 
 

APLX offers a range of features for accessing data in files. These include facilities both for storing and 

retrieving data within your APL applications, and for exchanging data with other applications. They 
include: 

Component Files 

For simple APL applications, you can often keep all the data you need in the current workspace in 

APL variables. However, for more sophisticated applications, this may not fit your requirements. For 

example, if you wrote a suite of functions which produced monthly profit and loss accounts, you 

might want to store the data for each month separately. You could arrange to keep the data in a series 
of stored workspaces, but you would not want to replicate the functions in each of these workspaces. 

Component files provide an efficient and easy-to-use method to store APL variables (of any type, 

shape, and size) in a file, and read them into the workspace when they are needed. Each individual 

item in the file is known as a component. A single number may constitute one component, while a 
matrix containing several thousand numbers may be its next door neighbour. 

Functions, operators and classes can also be stored in component files, but they must first be converted 
into character arrays by the system function ŢET, or stored via the overlay system function, ŢQX. 

APLX supports two different component file systems. The first is based on system functions such as 
ŢHVKG. It uses a syntax which is compatible with APL interpreters from other vendors. 

The second of these is based on the file-access primitives Ň ň Ō ŏ, as implemented in the predecessor 
to APLX, APL.68000. 

For more information, see the separate section on Component File Systems. 

Native Files 

'Native' files are operating-system files which are not necessarily associated with APL, and which are 

typically used for exchanging data with non-APL applications. For example, they might include text 

files, HTML pages, or binary files produced by a Fortran application. Unlike component files (which 

retain information about the type and shape of APL data), the structure of native files is unknown to 

APLX, so you as the programmer are responsible for specifying how the data should be interpreted. 

For example, you can specify that you want to read the first four bytes of a file as an integer, and the 
next 32 bytes as a character vector. 

See the section on Native File Functions for details. 



APLX Language Manual  88 

  

System Functions for Data Import/Export 

Although native files provide a general, low-level way to exchange data with other applications, there 

are a number of common file formats for which APLX provides an easier alternative, by means of the 

ŢKORQTV and ŢGZRQTV functions. These allow you to read or write the entire contents of a file in a 

single call. They support a number of common file formats, for example Unicode text, or Comma-

Separated Variable (CSV) files used for spreadsheets. The advantage of ŢKORQTV and ŢGZRQTV is that 

you do not have to write any code to interpret the file format yourself, since APLX already has the 
necessary logic built-in. 

Accessing Database Records 

Much of the data in modern computer systems, especially for large commercial applications with 

many thousands of records, is held in relational databases. These are accessed and updated using SQL 

('Structured Query Language'). You can easily interface to such databases by using the ŢUSN system 

function. This allows you to read and write records in most major commercial database systems 

including Oracle, SQL Server and DB2, as well as open-source databases such as MySQL and 

PostgreSQL. You can also exchange data with popular desktop file systems such as Microsoft Access. 

Other facilities 

In addition to the above facilities for directly reading and writing data into the APL workspace, APLX 

provides a number of System Classes which can manipulate specific types of files such as images and 

movies. See the documentation on the Picture, Movie, Image classes in the separate manual System 
Classes and User-Interface Programming. 



APLX Language Manual  89 

 

Section 2: APL Primitives 

 
 





APLX Language Manual  91 

 

+ Conjugate 

 
 

One-argument form  See also two-argument form Add 

+ returns the value of the numeric expression to its right. (See also Ţ output which can be used for a 

similar purpose.) Contrast the first example below, which places the result of a multiplication in 
COST, but does not display it, with the second: 

 
             EQUV""ģ"542ô:078"""""""""*Pq"tguwnv"fkurnc{gf+ 
             +CQUV"ģ"542ô:078"""""""""*Tguwnv"fkurnc{gf+ 
       2739.2  
             -*Ì3"2"39+"*4"5ŝŜ8+""""""*Ctiwogpv"fkurnc{gf"wpejcpigf+ 
        ¯1 0 17    1 2 3  
                   4 5 6  

 

+ Add 

 
 

Two-argument form  See also one-argument form Identity (Conjugate) 

Adds the numbers in the right and left-hand arguments: 

 
             12+3                     (Adds two scalars)  
       15 
             3 7 2+0 1 ¯4             (Adds the corresponding numbers  
       3 8 ¯2                          in vectors of equal size)  
             11+65 23 98 3            (Adds 11 to each number in a vector)  
       76 34 109 14  
             TABLE ģ"4"5"ŝ"Ŝ"8""""""""*Rwvu"vjg"pwodgtu"3"vq"8"kp"VCDNG+ 
             10+TABLE                 (Adds 10 to each number in TABLE)  
       11 12 13  
       14 15 16  
             TABLE+TABLE              (Adds corresponding numbers in  
       2 4 6                          matrices of equal size and dimensions)  
       8 10 12  
             3"-7"*4"4"ŝŜ6+"*Ŝ7+""""""*Uecnct"nghv"ctiwogpv"cffgf"vq"cnn 
        6    2 3   2 3 4 5 6           elements of right argument)  
             4 5  
             4""5-7"*4"4"ŝŜ6+"*Ŝ7+""  (Arguments must be the same length)  
       LENGTH ERROR 
             4"5-7*4"4ŝŜ6+*Ŝ7+ 
             ^  
             *4"4ŝŜ6+"32"*7ŝ5+-7"*4"4"ŝŜ6+"*Ŝ7+ 
       6 7    11 12   4 5 6 7 8       (Corresponding elements added)  
       8 9    13 14  

 



APLX Language Manual  92 

  

-  Negate 

 
 

One-argument form  See also two-argument form Subtract 

Reverses the signs of the right-hand argument: 

 
             -  5 6 2  
       ¯5 ¯6 ¯2  
             -  ¯1 4 ¯6 1  
       1 ¯4 6 ¯1  
             -*Ì33"39"Ì45+"*4"5ŝÌ5-Ŝ8+ 
        11 ¯17 23     2  1  0  
                     ¯1 ¯2 ¯3  

 

-  Subtract 

 
 

Two-argument form  See also one-argument form Negate 

Subtracts the number(s) in the right-hand argument from the number(s) in the left-hand argument: 

 
              240 - 1                  (Subtracts one number from an other)  
       239  
              8 4 6 - 1 0 2            (Subtracts each number in a vector from  
       7 4 4                          the corresponding number in a vector of  
                                      equal size)  
             22 ¯4 15 - 1              (Subtracts 1 from each number in a  
       21 ¯5 14                       vector of numbers)  
             VCDNG"ģ"5"5"ŝ"Ŝ"; 
             100- TABLE               (Subtracts each number in a matrix  
       99 98 97                       from a scalar)  
       96 95 94  
       93 92 91  
             TABLE- TABLE             (Subtracts each number in a matrix  
       0 0 0                          from the corresponding number in a  
       0 0 0                          matrix of equal size and dimensions)  
       0 0 0  
             1 -  5 (2 2 ŝŜ6+"*Ŝ7+""""*Gcej"gngogpv"kp"vjg"tkijv"ctiwogpv"ku 
        ¯4     0 ¯1   0 ¯1 ¯2 ¯3 ¯4   subtracted from 1)  
              ¯2 ¯3  
             2  3 -7"*4"4"ŝŜ6+"*Ŝ7+"""*Ctiwogpvu"owuv"dg"vjg"ucog"ngpivj+ 
       LENGTH ERROR 
             2 3 -7*4"4ŝŜ6+*Ŝ7+ 
             ^  
             *4"4ŝŜ6+"32"*7ŝ5+-7"*4"4"ŝŜ6+"*Ŝ7+ 
         ¯4 ¯3    9 8   2 1 0 ¯1 ¯2  (Corresponding elements subtracted)  
         ¯2 ¯1    7 6  

Note: Remember that APL uses a special symbol (the high minus ¯)  to indicate negative numbers. 
You will see some examples above. 



APLX Language Manual  93 

  

 

× Sign of 

 
 

One-argument form  See also two-argument form Multiply  

Shows the sign of the number(s) in the right-hand argument. Each positive number is represented by a 
1, each negative number by a ¯1 and each zero by a 0. 

 
             ×33 98 0 ¯5  
       1 1 0 ¯1  
             ×(¯33.1 0 27) 55 (2 2 ŝÌ4-Ŝ6+ 
        ¯1 0 1  1    ¯1  0  
                      1  1  

 

× Multiply  

 
 

Two-argument form  See also one-argument form Sign of 

Multiplies the number(s) in the right-hand argument by the number(s) in the left- hand argument. 

 
             23.8×0.12            (Multiplies one number by another)  
       2.856  
             12 8 39×9 81 2       (Multiplies each number in a vector by  
       108 648 78                  the corresponding number in a vector of  
                                   equal size)  
             12×89 91 ¯2 87       (Multiplies a scalar by each number in  
       1068 1092 ¯24 1044          a vector)  
             TABLE ģ"5"7"ŝ"Ŝ"37 
             TABLE × 5            (Multiplies each number in a matrix  
        5 10 15 20 25              by a scalar)  
       30 35 40 45 50  
       55 60 65 70 75  
            TABLE×TABLE           (Multiplies each number in a matrix  
         1   4   9  16  25         by the corresponding number in a matrix  
        36  49  64  81 100         of equal size and dimensions)  
       121 144 169 196 225  
             4"ô"7"*4"4"ŝŜ6+"*Ŝ7+"*Ownvkrnkgu"gxgt{"gngogpv"kp"vjg"tkijv 
        10    2 4   2 4 6 8  10     argument by 2)  
              6 8  
             4""5"ô"7"*4"4"ŝŜ6+"*Ŝ7+ 
       LENGTH ERROR               (Arguments must be the same length)  
             4"5ô7*4"4ŝŜ6+*Ŝ7+ 
             ^  
             *4"4ŝŜ6+"32"*5ŝ5+ô7"*4"4"ŝŜ6+"*Ŝ5+ 
          5 10     10 20   3 6 9   (Corresponding elements multiplied)  
         15 20    30 40  

 



APLX Language Manual  94 

  

÷ Reciprocal 

 
 

One-argument form  See also two-argument form Divide 

Gives the reciprocal of the right-hand argument, that is, the result of dividing 1 by each number in the 
right-hand argument. 

 
             ÷2                      (Reciprocal of 2, ie 1 divided by 2)  
       0.5  
             ÷10 5 1 ¯1              (Reciprocal of each number in a vector)  
       0.1 0.2 1 ¯1  
             ÷.5 .25 .01             (Reciprocal of each number in a vector)  
       2 4 100  
             Ĕ*4"4ŝ3"4"6"7+*ĔŜ6+"""""*Tgekrtqecn"qh"gcej"gngogpv"kp"vjg"xgevqt+ 
        1                 0.5              1 2 3 4  
        0.25              0.2  

If the right argument contains a zero, APLX will generate a DOMAIN ERROR.  

 

÷ Divide 

 
 

Two-argument form  See also one-argument form Reciprocal 

Divides the number(s) in the left-hand argument by the number(s) in the right- hand argument. 

 
             9÷3                     (One number is divided by another)  
       3 
             0÷0                     (This is a special case)  
       1 
             21 15 75 13÷5           (Division of each number in a vector by  
       4.2 3 15 2.6                   a single number)  
             12 8 24÷2 8 6           (Each number in one vector is divided by the  
       6 1 4                          corresponding number in another vector)  
             VCDNG"ģ"4"7"ŝ"Ŝ"32""""""*Pwodgtu"3"vq"32"cuukipgf"vq"VCDNG0 
             TABLE÷10                (Each number in TABLE is divi ded by 10  
       0.1  0.2  0.3  0.4  0.5  
       0.6  0.7  0.8  0.9  1  
             TABLE÷TABLE             (Each number in one matrix is divided by the  
       1 1 1 1 1                      corresponding number in another of the same  
       1 1 1 1 1                      size and dimensions)  
             1 ÷5 ( Ŝ5)               (1 divided by each element on the right)  
        0.2  1 0.5 0.3333333333 0.25 0.2  
             4""5Ĕ7"*Ŝ6+"*Ŝ7+""""""""*Ctiwogpvu"owuv"dg"vjg"ucog"ngpivj+ 
       LENGTH ERROR 
             4"5Ĕ7*Ŝ6+*Ŝ7+ 
             ^  
             *Ŝ6+"32"*Ŝ5+Ĕ"7"*4"4"ŝŜ6+"*Ŝ5+ 
        0.2 0.4 0.6 0.8       10                 5               1 1 1  
                               3.333333333       2.5  



APLX Language Manual  95 

  

                                     (Corresponding elements divided)  

If the right argument contains a zero, APLX will generate a DOMAIN ERROR.  

 

Ľ Ceiling 

 
 

One-argument form  See also two-argument form Greater of 

The number or numbers in the right-hand argument are rounded up to the next whole number. 

 
             Ľ 45.9  
       46 
             Ľ ¯3.8                   (Note effect of rounding up on a  
       ¯3                              negative number)  
             Ľ1.2 ¯0.3 99.1 2.8       (Each number in a vector is rounded up)  
       2 0 100 3  
             Ľ̄ 0.5+1.2 ¯0.3 9.1 2.8   (0.5 is subtracted from each number  
       3"2";"5"""""""""""""""""""""""""dghqtg"Ľ"ku"crrnkgf."rtqfwekpi 
                                       'true' rounding)  
            TABLE 
       62.8  3.0  ¯2.9  
        9.1  7.3   0.01  
             Ľ TABLE                  (Each number in  TABLE is rounded up)  
       63 3 ¯2  
       10 8  1  
             Ľ*309"330;;"Ì405+"*4"4ŝÌ303"3905"Ì203"32506+ 
        2 12 ¯2     ¯1  18            (Each element is rounded up)  
                     0 104  

Comparison tolerance 

When acting on a number which is very close to but slightly bigger than an integer, Ceiling may round 

down to that integer rather than round up. This will happen if the argument is within comparison 
tolerance of the integer, and is therefore considered in APL to be equal to it. 

Effect on internal representation 

See the description of ľ Floor for information on the internal representation of the result of Ceiling. 

 



APLX Language Manual  96 

  

Ľ Greater of 

 
 

Two-argument form  See also one-argument form Ceiling 

Finds the larger of two numbers. Each number in the right-hand argument is compared with the 

corresponding number in the left-hand argument. The result is the larger number from each 
comparison. (This operation is affected by ŢEV. the comparison tolerance) 

 
             :9"Ľ";3 
       91 
            Ì7"Ľ"Ì;"""""""""""""""""""*Vjg"pgicvkxg"pwodgt"pgctgt"2 
       ¯5                              is considered the greater)  
             42"9"62"Ľ";3"5"63""""""""*Gcej"pwodgt"kp"c"xgevqt"ku"eqorctgf 
       91 7 41                         with the corresponding number in a  
                                       vect or of equal size)  
             Ľ1VCDNG""""""""""""""""""*Vjg"1"qrgtcvqt"wugf"ykvj"Ľ 
       62.8 9.1                        to select the biggest in each row.  
                                       See the entry for /.)  
             4"Ľ3"*4"4"ŝŜ6+"*Ŝ5+""""" (The result of comparing 2 with each  
        2    2 2   2 2 3               element in the right argument)  
             3 4  
             4""5Ľ4"*4"4"ŝŜ6+"*Ŝ5+""""*Ctiwogpvu"owuv"dg"vjg"ucog"ngpivj+ 
       LENGTH ERROR 
             4"5Ľ4*4"4ŝŜ6+*Ŝ5+ 
             ^  
             *4"4ŝŜ6+"5"*Ŝ5+Ľ5"*4"4"ŝŜ6+"*5"4"3+ 
         3 3    3 3   3 2 3           (Corresponding elements compared)  
         3 4    3 4  

 

ľ Floor 

 
 

One-argument form  See also two-argument form Lesser of 

The number or numbers in the right-hand argument are rounded down to the next whole number. 

 
             ľ 45.9  
       45 
             ľ ¯2.3                   (Note the effect on a negative number)  
       ¯3 
             ľ 1.2 ¯0.3 99.1 2.8      (Each number in a vector is rounded  
       1 ¯ 1 99 2                       down)  
             ľ0.5+1.2 ¯0.3 99.1 2.8   (0.5 is added to each number before  
       3"2";;"5""""""""""""""""""""""""ľ"ku"crrnkgf"vq"kv."gpuwtkpi")vtwg) 
                                       rounding)  
             TABLE 
       62.8  3.0  ¯2.9  
        9.1  7.3   0.01  
             ľ TABLE                  (Each number in TABLE is rounded down)  
       62  3 ¯3  



APLX Language Manual  97 

  

        9  7  0  
             ľ*Ì203"Ì3203"3305"906+"*"4"4ŝÌ205"40:";;03"Ì405+ 
        ¯1 ¯11 11 7    ¯1  2          (Eac h element is rounded down)  
                       99 ¯3  

Comparison tolerance 

When acting on a number which is very close to but slightly smaller than an integer, Floor may round 

up to that integer rather than round down. This will happen if the argument is within comparison 
tolerance of the integer, and is therefore considered in APL to be equal to it. 

Effect on internal representation 

If the argument to Floor or Ceiling is an array which is held internally in boolean or integer form, then 
the result will always be represented in integer form and the numbers in the array will be unchanged. 

If the argument to Floor or Ceiling is internally in floating-point form, then in general, provided all the 

numbers within the argument are in the range of numbers which can be represented as integers, the 

result will internally be represented as integers rather than floating points. Floor or Ceiling can 
therefore be used to force the internal representation of numbers to integer form: 

 
      Xģ502"32202"Ì4202 
      ŢDR X 
3 
      [ģľZ 
      ŢDR Y 
2 
      X 
3 100 ¯20  
      Y 
3 100 ¯20  
      X=Y 
1 1 1  

In this example, X is held internally in floating-point format, but Y is held internally in integer format. 

The values of the array elements are, however, equal. 

See ŢFT for more information on data representation. 

Differences between 32-bit and 64-bit implementations of APLX 

In the 32-bit version of APLX, numbers can be represented as integers if they are in the range 

¯2147483648  to 2147483647 . If the argument to Floor or Ceiling contains numbers which round to 
numbers outside this range, the result will internally be represented in floating-point format. 

In the 64-bit APLX64 interpreter, numbers can be represented as integers if they are in the range 

¯9223372036854775808  to 9223372036854775807 . However, the floating-point representation of a 

number is limited to 53 bits of precision, which is equivalent to saying that at 2*53  and above, several 

integers all map to the same floating-point representation. For this reason, if the argument to Floor or 

Ceiling is in floating-point form, and contains numbers whose magnitude is equal to or greater than 

2*53 , the result will be left in floating-point form so as not to introduce a spurious precision to 
numbers which are inherently imprecise. 



APLX Language Manual  98 

  

In this example using APLX64, X is represented internally as a 64-bit integer, and Y is represented 
internally as a floating-point number: 

 
      Xģ4,75 
      X 
9007199254740992  
      ŢDR X 
2 
      [ģZô302 
      Y 
9.007199255E15  
      ŢDR Y 
3 
      ľY 
9.007199255E15  
      ŢFT"ľ[ 
3 
      ľY- 1 
9007199254740991  
      ŢFT"ľ[- 1 
2 

 

ľ Lesser of 

 
 

Two-argument form  See also one-argument form Floor 

Finds the smaller of two numbers. Each number in the right-hand argument is compared with the 

corresponding number in the left-hand argument. The result is the smaller number from each 
comparison. (This operation is affected by ŢEV. the comparison tolerance) 

 
             :9"ľ";3 
       87 
             Ì7"ľ"Ì;""""""""""""""""""*Vjg"pgicvkxg"pwodgt"hwtvjgt"htqo"2 
       ¯9                              is considered the smaller)  
             42"9"62"ľ";3"5"63""""""""*Gcej"pwodgt"kp"c"xgevqt"ku"eqorctgf 
       20 3 40                          with the corresponding number in a  
                                       vector of equal size)  
             TABLE1 
       0  ¯3  66  
       9  16   4  
             TABLE2 
       12  ¯8  17  
        7   0   1  
             VCDNG3"ľ"VCDLE2          (Each  number  in  a  matrix  is  compared  
       0  ¯8  17                       with the corresponding number in  
       7   0   1                       a matrix with the same number of rows  
                                       and columns)  
             2 ľ3"*4"4"ŝŜ6+"*Ŝ5+""""""*Gcej"gngogpv"kp"vjg"tkijv"ctiwogpv"ku 
        1    1 2   1 2 2               compared with 2)  
             2 2  

 



APLX Language Manual  99 

  

|  Absolute value 

 
 

One-argument form  See also two-argument form Residue 

Makes any negative numbers in the right-hand argument positive. 

 
             | 2 ¯4 ¯7.8 3  
       2 4 7.8 3  
             ~*Ì203"Ì3203"3305"47+"*4"4ŝÌ32"5"Ì67"403+ 
        0.1 10.1 11.3 25  10 3  
                          45 2.1  

 

|  Residue 

 
 

Two-argument form  See also one-argument form Absolute value 

For positive arguments, gives the remainder resulting from dividing the right- hand argument by the 

left-hand argument. When the arguments are of the opposite sign, the result is the complement of the 

result that you would get if they had the same sign. So for non-zero results, you must subtract the 

remainder from the divisor. (This operation is affected by ŢEV. the comparison tolerance) 

 
             3 | 10                  (The remainder of 10÷3)  
       1 
             7 | 24 5 0 25           (The remainder of dividing each  
          3 5 0 4                     number in a vector by 7)  
            3 17 2 | 5  20 3          (The remainder after dividing each  
       2 3 1                          number in a vector by the corresponding  
                                      number in another similar vector)  
           Ì9"~"Ŝ"32 
      ¯6 ¯5 ¯4 ¯3 ¯2 ¯1 0 ¯6 ¯5 ¯4  
            VCDNG"ģ"4"5"ŝ"Ŝ"8""""""""*Vjg"tgockpfgt"qh"fkxkfkpi"gcej 
           4 | TABLE                  number in a matrix by 4)  
       1 2 3  
       0 1 2  
            TABLE | TABLE            (The remainder after dividing each  
       0 0 0                          number in a matrix by the  
       0 0 0                          corresponding number in another)  
             4"~3"*4"4"ŝŜ6+"*Ŝ5+"""""*Fkxkfg"gxgt{"gngogpv"d{"4+ 
        1    1 0   1 0 1  
             1 0  
             4""5~4"*4"4"ŝŜ6+"*Ŝ5+"""*Ctguments must be of equal length)  
       LENGTH ERROR 
             4"5~4*4"4ŝŜ6+*Ŝ5+ 
             ^  
             *4"4ŝŜ6+"5"*Ŝ5+~5"*4"4"ŝŜ6+"*5"4"3+ 
         0 1    1 2   0 0 1          (Corresponding elements divided)  
         0 3    0 1  

 



APLX Language Manual  100 

  

Ŝ Index generator 

 
 

One-argument form  See also two-argument form Index of 

Ŝ generates a series of integers which start at the index origin *ŢKQ+ and whose length is specified by 

the right argument which must be 0 or a positive integer scalar. The examples below assume the 

default index origin of 1 (see ŢKQ for more details). The argument to Ŝ must be a simple numeric 
scalar or one-element vector. 

 
             ŢKQ"""""""""""""""""""""*Fghcwnv"ugvvkpi"qh"ŢKQ+ 
       1 

To generate the series from 1 to 10: 

 
             Ŝ 10 
       1 2 3 4 5 6 7 8 9 10  

To generate the series 1 to 5 to be used in selecting the first five elements from a vector (see separate 
entry for [  ]):  

 
             RTKEGģ4;"6"83"7"::"4"3:";2"5"423"34"75"49":2 
             RTKEG]Ŝ"7_ 
       29 4 61 5 88  

To generate a vector of five elements containing the series 1, 1 2, and so on, use the ¨  ('each') operator. 

 
             ŜÅŜ7 
        1  1 2  1 2 3  1 2 3 4  1 2 3 4 5  

A common mechanism to generate an empty vector is: 

 
             Ŝ0 
                                     (No display)  

 

Ŝ Index of 

 
 

Two-argument form  See also one-argument form Index generator 

Ŝ finds whether the items in the right argument occur in the left argument (which must be a vector) 

and if so in what positions. For each element in the right argument a number is returned showing its 

position in the left argument. If an element is not found in the left argument (or if the arguments are of 

different types), a number one greater than the position of the last element in the left argument is 
returned. The shape of the result is the same as that of the left argument. 



APLX Language Manual  101 

  

The result of dyadic Ŝ is influenced by ŢKQ, which will control whether the index positions start at 0 or 

1 -  for more details see the entry for ŢKQ. The comparisons done by this operation are affected by ŢEV, 
the comparison tolerance value. 

 
             4"7";"36"42"Ŝ"; 
       3                              (9 is in position 3)  
 
             4"7";"36"42"Ŝ"34"""""""""*34"kup)v"kp"vjg"nghv"ctiwogpv."uq"c 
       6                               number 1 greater than the number of  
                                       elements on the left results)  
             )IQTUWEJ)"Ŝ")U) 
       4                              (S occurs in position 4)  
 
             )CDEFGHIJKLMNOPQRSTUVWXYZ[\)"Ŝ")ECTR) 
       3 1 18 16                      (The characters 'CARP' are in positions  
                                       3 1 18 and 16)  
 
              )CDEFGHIJKLMNOPQRSTUVWXYZ[\)"Ŝ")RQTM"RKG) 
       16 15 18 11 27 16 9 5          (The 27 in the result indicates  
                                       characters not found in the 26 - character  
                                       left argument. In this case the 'space'  
                                       character.)  
             FC[Uģ)OQP)")VWGU)")YGF) 
             ŝDAYS 
       3                              (DAYS is a 3 element vector)  
             DC[U"Ŝ")OQP)")VJWTU)"""""*)OQP)"hqwpf"kp"hktuv"rqukvkqp.")VJWTU) 
       1 4                             is not found)  

See ı (Match) for a discussion of the criteria which determine whether two elements are considered 
the same. 

 

? Roll 

 
 

One-argument form  See also two-argument form Deal 

Generates numbers chosen at random from the series of the first N integers which start at the index 

origin (ŢKQ),where N is specified by the right argument. In the examples below ŢKQ is set to 1, the 

default. 

 
             ? 100                   (Generates  a  random   number   between  1  
        14                            and 100)  
             ? 10 100 1000           (Generates 3 random numbers, the first  
        10 39 520                     between 1 and 10, the second  between  
                                      1 and 100, the third between 1 and 1000)  
             DATA ģ"A322"ŝ"322"""""""*Igpgtcvgu"322"tcpfqo"pwodgtu"kp"vjg"tcpig 
                                      1 to 100 -  not necessarily unique)  
             A*5ŝ7+"*4"5ŝ32+ 
        1 4 3     6  3  1  
                  7  7 10  

Note: The system variable ŢTN (random link) contains a value used to generate random numbers. To 

generate the same number(s) on two occasions, set ŢTN to the same value before each use of ?.  



APLX Language Manual  102 

  

 

? Deal 

 
 

Two-argument form  See also one-argument form Roll 

Generates as many random numbers as are specified in the left-hand argument from the first N 

numbers starting at ŢKQ, where N is specified in the right-hand argument. Each number generated is 

unique; that is to say there are no repetitions. The left and right arguments must be simple numeric 

scalars or one-element vectors. 

 
             10 ? 100                (A request for 10 unique random numbers  
       68"76"44"7"8:";6"5;"74":6"6""""kp"vjg"tcpig"3"vq"322."cuuwokpi"ŢKQ"ku"3"+ 
             NKUV"ģ"5"A"32"""""""""""*5"tcpfqo"pwodgtu"dgvyggp"3"cpf"32 
                                      are put in LIST)  
             DKPIQģ6"6ŝ38A322 
             BINGO                   (16 random numbers between 1 and 100  
       41 12 46 71                    are put into a 4 - by - 4 matrix called  
        6 54 68  4                    BINGO) 
       63 94 87 58  
       21 70 50 75  
             4 ? 3                   (A request for 4 unique integers in  
       DOMAIN ERROR                   the range 1 to 3 causes an error)  

Note: The system variable ŢTN (random link) contains a value used to generate random numbers. To 

generate the same number(s) on two occasions, set ŢTN to the same value before each use of ?.  

 
             ŢTN"ģ"34567 
             5 ? 10000  
       97 834 948 36 12  
             ŢTN"ģ"34567 
             5 ? 10000  
       97 834 948 36 12  

 

*  Exponential 

 
 

One-argument form  See also two-argument form Power 

Returns the mathematical constant e (approximately 2.718) raised to the power of the right argument. 

 
             * 1  
       2.718281828                   (e to the power of 1 is e itself)  
             * 2  
       7.389056099                   (e squared)  
             *Ŝ3                     (e to the power 1 2 3)  
       2.718281828 7.389056099 20.08553692  
             ,*Ŝ4+"*4"4ŝŜ6+ 
        2.718281828 7.389056099        2.718281828       7.389056099  
                                      20.08553692       54.59815003  



APLX Language Manual  103 

  

 

*  To the power of 

 
 

Two-argument form  See also one-argument form 'e' to power  

Raises the left-hand argument to the power of the right-hand argument. 

 
             2 * 3                   (2 to the power 3, or 2 cubed)  
       8 
             ¯1 * 2 3 4  
       1 ¯1 1                        (¯1 to the power 2 3 4)  
            2 * 0.5  
       1.414213562                   (Square root of 2)  
            2 4 6 8 16 * 2  
       4 16 36 64 256                (Square of 2 4 6 8 16)  
             ¯1*0.5                  (No unreal number result allowed)  
       DOMAIN ERROR 
             ¯1*0.5  
               ^  

If the right argument is negative, the result is the reciprocal of the result obtained from using a right 
argument which is the absolute value of the negative argument. 

 
             2*¯3  
       0.125  
             ÷2*3                    (Reciprocal of 2*3)  
       0.125  
 
             (( Ŝ5+*4"4ŝŜ6++,4 
        1 4 9  1  4  
               9 16  

 

œ Natural log 

 
 

One-argument form  See also two-argument form Log to the base 

Finds the natural logarithm, that is the log to the base e, of the number or numbers in the right-hand 

argument (e is approximately 2.7182). The numbers must be positive. 

 
             œ 10                    (Finds the log to base e of 10)  
       2.302585093  
             œ 3 9 18                (Finds the log to base e of 3 9 and 18)  
       1.098612289 2.197224577 2.8903717 58 
             œ 3.3                   (Finds the log to base e of 3.3)  
       1.193922468  
             œ*4"4ŝŜ6+"*Ŝ5+ 
            0                 0.6931471806     0 0.6931471806 1.098612289  
            1.098612289       1.386294361  



APLX Language Manual  104 

  

 

œ Log to the base 

 
 

Two-argument form  See also one-argument form Natural Logarithm 

Computes the log of a number or numbers to an arbitrary base. The left-hand argument is the base and 
the right-hand argument is the number whose log is to be found. 

 
             5"œ";""""""             (The log of 9 to the base 3)  
       2 
             4"5"6"7"8œ6";"38"47"58""*Vjg"nqi"qh"gcej"pwodgt"qp"vjg"tkijv"vq 
       2 2 2 2 2                      the corresponding base on the left)  
             4"œ"4"6":"38"54"86 
       1 2 3 4 5 6  
             4"œ"350; 
       3.797012978  
             4"5œ*4"4ŝ4"6":"38+"*5";"49+ 
       1 2  1 2 3  
       3 4                            (Corresponding elements of left and right  
                                      arguments used as successive arguments to  
                                      vjg"œ"hwpevkqp+ 

 

ű Pi times 

 
 

One-argument form  See also two-argument form Circular & Hyperbolic functions 

The value of pi (approx. 3.141592654) is multiplied by the right-hand argument. 

 
             ű"3"""""""""""          (pi times 1 is pi)  
       3.141592654  
             űĔ6"""""""""""""""""""""*rk"fkxkfgf"d{"6."qt"67"fgitggu."kp 
       0.7853981634                    radians)  
             ű"3"4"5"""""""""""""""""*rk"vkogu"gcej"pwodgt"kp"vjg"xgevqt+ 
       3.1415 92654 6.283185307 9.424777961  
             32"52"67ôűĔ3:2""""""""""*eqpxgtvu"32"42"67"fgitggu"vq"tcfkcpu+ 
       0.1745329252 0.5235987756 0.7853981634  

 



APLX Language Manual  105 

  

ű Circular and Hyperbolic functions 

 
 

Two-argument form  See also one-argument form pi times 

This form of ű provides you with a group of related functions. The left argument identifies which of 

these functions you wish to use, the right argument is the data the function works on. (Data to 
trigonometric functions is expressed in radians.) 

 
     Left argume nt 0 or positive          Left argument negative  
 
     0  square root of 1 - X*2  
     1  sin X                             ¯1  arcsin X  
     2  cos X                             ¯2  arccos X  
     3  tan X                             ¯3  arctan X  
     4  squa re root of (X*2)+1            ¯4  square root of (X*2) - 1 
     5  sinh X                            ¯5  arcsinh X  
     6  cosh X                            ¯6  arcosh X  
     7  tanh X                            ¯7  arctanh X  

For example: 

 
             1 ű"űĔ6"""""""""""""""""*67"fgitggu"ku"űĔ6"tcfkcpu"cpf 
       0.7071067812                  Sin of 45 degrees is 1÷root 2)  

The functions 2ű. 6ű. Ì6ű are known as the 'Pythagorean functions'. For example, given a right-

angled triangle with hypotenuse of length 1, the length of one of the other two sides is 0 ű times the 

length of the third side. Conversely, if one of the sides in the triangle adjacent to the right angle is of 

length 1, the length of the hypotenuse is given by 6ű times the length of the third side and the length of 
the third side is ̄4 ű times the length of the hypotenuse. 

Numeric Accuracy 

Calculations of trigonometric functions are subject to accuracy limitations, especially near 

mathematical singularities. In addition, for very large arguments, the circular functions become 

meaningless because of limitations in the resolution of floating-point numbers, since the 'correct' 

answer depends on bits which have been lost from the representation. For these reasons, APLX gives a 
DOMAIN ERROR if you ask for the sine, cosine or tangent of a number greater than 2*51 . 

 



APLX Language Manual  106 

  

!  Factorial 

 
 

One-argument form  See also two-argument form Binomial 

When applied to a positive whole number, !  gives the product of the whole numbers from 1 to that 
number, inclusive. 

 
             ! 3                     (Equivalent of 1×2×3)  
       6 

If the argument is non-integer and positive, !  gives the mathematical 'gamma function' of the 
argument + 1. 

 
             ! 2.5  
       3.32335097  

 

!  Binomial 

 
 

Two-argument form  See also one-argument form Factorial or Gamma function 

In its two-argument form, with positive arguments, !  tells you how many different ways there are of 

selecting the number of items specified on the left from the population of items specified on the right. 

The order of items in each pair is ignored. So if the population of four consisted of the letters A B C 

D, the 6 possible combinations of 2 letters would be: AB AC AD BC BD CD. The combination BA 
would be regarded as the same as AB. 

 
             2 ! 4                   (Number of unique pairs from a population  
       6                              of 4)  
             3 ! 20                  (Number of groups of three from a  
       1140                           population of 20)  
             2 ! 6 12 20             (Number of pairs from a population  
       15 66 190                      of 6 12 20 respectively)  
             VCDNG3"ģ"4"5ŝŜ8 
             VCDNG4"ģ"4"5"ŝ"5"8";"34"37"3: 
             TABLE1 ! TABLE2         (TABLE1 is table of group sizes, TABLE2  
         3                15                84        is table of populations)  
       495              3003             18564  

Other cases, such as negative or non-integer arguments, are also catered for. The various results that 

can be obtained are: 

 
      Left       Right     Right - Left      Result  
      Argument   Argument  
       +ve        +ve        +ve           (!RIGHT)÷(!LEFT)×!RIGHT - LEFT 
       +ve        +ve        - ve           0  
       +ve        - ve        - ve           (¯1*LEFT)×LEFT!LEFT - RIGHT+1 



APLX Language Manual  107 

  

       - ve        +ve        +ve           0  
       - ve        - ve        +ve           (¯1*RIGHT - LEFT)×(|RIGHT+1)!(|LEFT+1)  
       - ve        - ve        - ve           0  

 

Ł Matrix inverse 

 
 

One-argument form  See also two-argument form Matrix division 

Produces the inverse of the matrix in the right-hand argument. The right argument must be a simple 

numeric array. The inverse of a matrix is itself a matrix. It is constructed so that, if matrix-multiplied 

by the original matrix, it gives the identity matrix, that is the matrix analogue of unity. In matrix 

algebra, an inverse is usually found only for a square matrix. APL further defines a matrix inverse for 

a matrix with more rows than columns. In this case the shape of the inverse is the reverse of the shape 
of the matrix being inverted, and the expression: 

 
             *Ł[+-0ô[ 

still gives the identity matrix. The result of the inverse is the left inverse. 

 
             TABLE 
       7  9  8  
       3  4  5  
       6  2  1  
             8""4"Ŏ"Ł"VCDNG 
       ¯.11   .12   .23  
        .47  ¯.72  ¯.19  
       ¯.32   .70   .02  

Matrix multiplication is carried out by the inner product operation +.×  (see Inner product). 

 
             *Ł4"4ŝ7"3"2"3+-0ô4"4ŝ7"3"2"3 
       1 0                           (A matrix multiplied by its inverse gives  
       0 1                            the unit matrix)  

If the right argument to Ł is a scalar, the result is the reciprocal of the argument. 

 
             Ł2 
       0.5  

If the matrix is singular (i.e. does not have an inverse), a DOMAIN ERROR will be reported. Note 

that matrix inversion is subject to accuracy limitations imposed by the representation of floating-point 

numbers and the algorithm used to calculate the result. In particular, matrices which are nearly 

singular may give results of limited accuracy, and small changes to the input can produce very big 
changes to the output. 

 



APLX Language Manual  108 

  

Ł Matrix divide  

 
 

Two-argument form  See also one-argument form Matrix inversion 

The right and left-hand arguments are conformable simple numeric matrices (arrays of rank 2). 

Vectors are treated as one column matrices and scalars are treated as matrices of shape 1 1. The result 

is a matrix which, if matrix- multiplied by the right-hand argument, would yield the left-hand 
argument. 

 
             X 
       1  2  
       3  6  
       9 10  
             Y 
       1 0 0  
       1 1 0  
       1 1 1  
             Z"Ł"[ 
       1          2  
       2          4  
       6          4  

This last operation is the same as 

 
             *"Ł"["+"-0ô"Z 

which is another way of defining the operation. 

An important use for matrix divide is to give the least squares solution to the set of simultaneous linear 

equations: 

 
             B = A +.× X             for a matrix A and vector B, or columns of  
                                      matrix B  

The solution is: 

 
             D"Ł"C 

If the matrix division does not have a solution, DOMAIN ERROR will be reported. Note that matrix 

division is subject to accuracy limitations imposed by the representation of floating-point numbers and 
the algorithm used to calculate the result. 

 



APLX Language Manual  109 

  

< Less than 

 
 

Compares each element in the left-hand argument with the corresponding element in the right-hand 

argument. If an element in the left-hand argument is less than the corresponding right-hand element, 

the result of that comparison is 1. Otherwise it is 0. (This operation is affected by ŢEV. the comparison 
tolerance) 

 
             12 < 1  
       0 
             2 < 12  
       1 
             12 < 12  
       0 
             11 7 2 5 < 11 3 2 6     (Compares each element in a vector with  
       0 0 0 1                        the corresponding ele ment in a vector of  
                                      equal length)  
 
             ¯3 < ¯4                 (Compares negative numbers. The number  
       0                              nearer 0 is considered the greater.)  
 
             8 < 2+2+2+2             (The right argument is evaluated  
       0                              before the comparison is made)  
 
             TABLE ģ"4"5"ŝ"3"4"5"6"7"8 
             OCDNG"ģ"4"5"ŝ"5"5"5"7"7"7 
             TABLE < MABLE           (Compares each element in a matrix  
       1 1 0                          with the corresponding element in  
       1 0 0                          a matrix of equ al size and dimensions)  
             3<TABLE 
       0 0 0  
       1 1 1  
             3 < TABLE MABLE         (Compares 3 with the elements of the  
        0 0 0  0 0 0                  nested vector)  
        1 1 1  1 1 1  

 

ĳ Less than or equal 

 
 

Compares each element in the left-hand argument with the corresponding element in the right-hand 

argument. If an element in the left-hand argument is less than, or equal to, the corresponding right-

hand element, the result of that comparison is 1. Otherwise it is 0. (This operation is affected by ŢEV. 
the comparison tolerance) 

 
             34"ĳ"3 
       0 
             4"ĳ"34 
       1 
             34"ĳ"34 
       1 
             33"9"4"7ĳ33"5"4"8"""""""*Eqorctgu"gcej"gngogpv"kp"c"xgevqt"ykvj 
       1 0 1 1                        the corresponding ele ment in a vector of  



APLX Language Manual  110 

  

                                      equal length)  
             Ì5"ĳ"Ì6"""""""""""""""""*Eqorctgu"pgicvkxg"pwodgtu0"Vjg"pwodgt 
       0                              nearer 0 is considered the greater.)  
             :"ĳ"4-4-4-4"""""""""    (The right argument is evaluated  
       1                              before the comparison is made)  
 
             VCDNG"ģ"4"5"ŝ"3"4"5"6"7"8 
             OCDNG"ģ"4"5"ŝ"5"5"5"7"7"7 
             VCDNG"ĳ"OCDNG"""""""""""*Eqorctgu"gcej"gngogpv"kp"c"ocvtkz 
       1 1 1                          with the corresponding element in  
       1 1 0                          a matrix of equal size and dimensions)  
             5ĳVCDNG 
       0 0 1  
       1 1 1  
             5"ĳ"VCDNG"OCDNG"""""""""*Eqorctgu"5"ykvj"vjg"glements of the  
        0 0 1  1 1 1                  nested vector)  
        1 1 1  1 1 1  

 

= Equal 

 
 

Compares each element in the right-hand argument with the corresponding element in the left-hand 

argument and returns 1 if they are equal, 0 if they are not. (This operation is affected by ŢEV. the 
comparison tolerance) 

This function works on both numeric and character data. A numeric element is never considered equal 

to a character element. 

 
             12 = 12  
       1 
             2 = 12  
       0 
             'Q' = 'Q'               (Com pares character data)  
       1 
             1 = '1'                 (Comparisons between numeric and character  
       0                              data  are allowed, but always give 0)  
             11 7 2 9 = 11 3 2 6     (Compares each element in a vect or with  
       1 0 1 0                        the corresponding element in a vector of  
                                      equal length)  
             'STOAT' = 'TOAST'  
       0 0 0 0 1  
             8 = 2+2+2+2             (The right argument is evaluated  
       1                              before the comparison is made)  
             VCDNGģ4"5ŝ3"4"5"6"7"8 
             OCDNGģ4"5ŝ5"5"5"7"7"7 
             TABLE = MABLE           (Compares each element in a matrix  
       0 0 1                          with t he corresponding element in  
       0 1 0                          a matrix of equal size and dimensions)  
             3=TABLE 
       0 0 1  
       0 0 0  
             3 = TABLE MABLE         (Compares 3 with the elements of the  
        0 0 1  1 1 1                  nested vector)  
        0 0 0  0 0 0  

See also the ı (match) function which tests for depth, rank and shape equality as well. 



APLX Language Manual  111 

  

If the arguments contain object (or class) references, the elements are considered equal if the reference 

indices are the same, i.e. if they refer to the same entry in APL's internal table of objects. For internal 

objects, this will be true if and only if the elements refer to the same object. Note that different objects 

which happen to contain the same properties are not considered equal. For example, if Point is a 
simple class with properties X and Y: 

 
             PTģŢPGY"Rqkpv 
             RV0Zģ85"ļ"RV0[ģ64 
             CģRV 
             DģRV0ŢENQPG"3 
             C0ŢFU 
       X=63, Y=42  
             D0ŢFU 
       X=63, Y=42  
             C?RV""""""ő"Tghgtgpegu"vq"vjg"ucog"qdlgev 
       1        
             B=PT      ő Objects are different, but have the same property values  
       0 

For external objects, there might be two references which APL does not know refer to the same object. 
Therefore the use of the APL Equals primitive on external objects is not recommended. 

 

Ĵ Greater than or equal 

 
 

Compares each element in the left-hand argument with the corresponding element in the right-hand 

argument. If an element in the left-hand argument is greater than, or equal to, the corresponding right-

hand element, the result of that comparison is 1. Otherwise it is 0. (This operation is affected by ŢEV. 
the comparison tolerance) 

 
             34"Ĵ"3 
       1 
             4"Ĵ"34 
       0 
             34"Ĵ"34 
       1 
             33"9"4"7"Ĵ"33"5"4"8"""""*Eqorctgu"gcej"gngogpv"kp"a vector with  
       1 1 1 0                        the corresponding element in a vector of  
                                      equal length)  
             Ì5ĴÌ6"""""""""""""""""""*Eqorctgu"pgicvkxg"pwodgtu0"Vjg"pwodgt 
       1                              nearer 0 is considered the greater.)  
             :"Ĵ"4-4-4-4"""""""""""""*Vjg"tkijv"ctiwogpv"ku"gxcnwcvgf 
       1                              before the comparison is made)  
             VCDNG"ģ"4"5"ŝ"3"4"5"6"7"8 
             OCDNG"ģ"4"5"ŝ"5"5"5"7"7"7 
             VCDNG"Ĵ"OCDNG"""""""""""*Eqorctgu"gcej"gngogpv"kp"c"ocvtkz 
       0 0 1                          with the corresponding element in  
       0 1 1                          a matrix of equal size and dimensions)  
             5ĴVCDNG 
       1 1 1  
       0 0 0  
             5"Ĵ"VCDNG"OCDNG"""""""""*Eqorctgu"5"ykvj"vjg"gngogpvu"qh"vjg 
        1 1 1  1 1 1                  nested vector)  
        0 0 0  0 0 0  



APLX Language Manual  112 

  

 

> Greater than 

 
 

Compares each element in the left-hand argument with the corresponding element in the right-hand 

argument. If an element in the left-hand argument is greater than the corresponding right-hand 

element, the result of that comparison is 1. Otherwise it is 0. (This operation is affected by ŢEV. the 
comparison tolerance) 

 
             12 > 1  
       1 
             2 > 12  
       0 
             12 > 12  
       0 
             11 7 2 5 > 11 3 2 6     (Compares each element in a vector with  
       0 1 0 0                        the corresponding element in a vector of  
                                      equal length)  
             ¯3 > ¯4                 (Compares negative numbers. The number  
       1                              nearer 0 is considered the greater.)  
             8 > 2+2+2+2             (The right argument is evaluated  
       0                              before the comparison is made)  
             VCDNG"ģ"4"5"ŝ"3"4"5"6"7"8 
             OCDNG"ģ"4"5"ŝ"5"5"5"7"7"7 
             TABLE > MABLE           (Compares each element in a matrix  
       0 0 0                          with th e corresponding element in  
       0 0 1                          a matrix of equal size and dimensions)  
             3>TABLE 
       1 1 0  
       0 0 0  
             3 > TABLE MABLE         (Compares 3 with the elements of the  
        1 1 0  0 0 0                  nested vector)  
        0 0 0  0 0 0  

 

İ Not equal 

 
 

Compares each element in the right-hand argument with the corresponding element in the left-hand 

argument and returns 1 if they are not equal and 0 if they are. (This operation is affected by ŢEV. the 

comparison tolerance function) 

 
             34"İ"34 
       0 
             4"İ"34 
       1 
             )S)"İ")S)"""""""""""""""*Eqorctgu"ejctcevgt"fcvc+ 
       0 
             33"9"4";İ33"5"4"8"""""""*Eqorctgu"gcej"gngogpv"kp"c"xgevqt"ykvj 
       0 1 0 1                        the corresponding element in a vector of  
                                      equal length)  
             )UVQCV)"İ")VQCUV) 
       1 1 1 1 0  



APLX Language Manual  113 

  

             :"İ"4-4-4-4"""""""""""""*Vjg"tkijv"ctiwogpv"ku"gxcnwcvgf 
       0                              before the comparison is made)  
             VCDNG"ģ"4"5"ŝ"3"4"5"6"7"8 
             OCDNG"ģ"4"5"ŝ"5"5"5"7"7"7 
             VCDNG"İ"OCDNG"""""""""""*Eqorctgu"gcej"gngogpv"kp"c"ocvtkz 
       1 1 0                          with the corresponding element in  
       1 0 1                          a matrix of equal size and dimensions)  
             5İVCDNG 
       1 1 0  
       1 1 1  
             5"İ"VCDNG"OCDNG"""""""""*Eqorctgu"5"ykvj"vjg"gngogpvu"qh"vjg 
        1 1 0  0 0 0                  nested vector)  
        1 1 1  1 1 1  

 

ı Depth 

 
 

One-argument form  See also two-argument form Match 

Depth is used to indicate the level of nesting. For a simple scalar, depth is 0. For other arrays, the 

depth of the array is 1+ the depth of the item of maximum depth in the array. 

 
             ı6"""""""               (Depth of a scalar is 0)  
       0 
             ıŜ6"""""""""""""""""""""*Fgrvj"qh"c"xgevqt"ku"3+ 
       1 
             ı4"4ŝŜ8"""""""""""""""""*Fgrvj"qh"c"ocvtkz"ku"3+ 
       1 
             ı)CDE)"3"4"5"*45"77+""""*Oczkowo"fgrvj"ku"3-"fgrvj"qf a vector)  
       2 
             )CDE)"*4"6ŝ*)CDE)"4"5")M)++ 
       ABC  ABC 2 3 K                (Maximum depth object within the array is  
            ABC 2 3 K                 2 -  a matrix)  
             ı)CDE)"*4"6ŝ*)CDE)"4"5")M)++ 
       3                             (Overall depth is thus 3)  

See also ŝ (shape) to enquire about the shape of an array. 

 

ı Match 

 
 

Two-argument form  See also one-argument form Depth 

The match function will test whether its arguments are the same in every respect -  depth, rank, shape 
and corresponding elements. The result is always a scalar 1 or 0. 

 
             5ı5"""""""""""""""""""""*Vyq"uecnctu"ctg"kfgpvkecn+ 
       1 
             5ı.5""""""""""""""""""""*Uecnct"fqgu"pqv"ocvej"c"xgevqt+ 
       0 



APLX Language Manual  114 

  

             6"903":"ı"6"7.2 8       (Shape is the same but values are not)  
       0 
             *5"6ŝŜ34+ı5"6ŝŜ34"""""""*Vyq"ocvtkegu"ctg"kfgpvkecn+ 
       1 
             *5"6"ŝŜ34+ıĵ5"6ŝŜ34"""""*Ukorng"ocvtkz"fqgu"pqv"ocvej"cp"gpenqugf 
       0                              vers ion of itself)  
             XGEģ)CDE)")FGH)"""""""""*Vyq"gngogpv"xgevqt"qh")CDE)")FGH+ 
             VEC 
       ABC DEF 
             ŝVEC                    (Length 2)  
       2 
             XGEı)CDEFGH)""""""""""""*Fqgu"pqv"ocvej"vjg"8"gngogpv"xgevqt 
       0                              'ABCDEF')  

Empty arrays are considered the same only if they have the same type, rank, shape and prototype. 

 
             *Ŝ2+ı))"""""""""""""""""*V{rgu"ctg"fkhhgtgpv+ 
       0 
             *4"2ŝ2+ı2"4ŝ2"""""""""""*Ujcrgu"ctg different)  
       0 
             *2ŝĵ3"4"5+ı2ŝĵ4"4ŝŜ6""""*Rtqvqv{rgu"ctg"fkhhgtgpv+ 
       0 

The comparisons done by this operation are affected by ŢEV, the comparison tolerance value. 

If the arguments contain object (or class) references, the elements are considered equal if the reference 

indices are the same, i.e. if they refer to the same entry in APL's internal table of objects. For internal 

objects, this will be true if and only if the elements refer to the same object. Note that different objects 
which happen to contain the same properties are not considered equal. 

 

Ĳ Not Match 

 
 

The Not Match function Ĳ will test whether its arguments are different in any respect - depth, rank, 

shape or corresponding elements. The result is always a scalar 1 or 0. It is equivalent to ¡N"ı"T 

 
             5Ĳ5"""""""""""""""""""""*Vyq scalars are identical)  
       0 
             5Ĳ.5""""""""""""""""""""*Uecnct"fqgu"pqv"ocvej"c"xgevqt+ 
       1 
             6"903":"Ĳ"6"904":"""""""*Ujcrg"ku"vjg"ucog"dwv"xcnwgu"ctg"pqv+ 
       1 
             *5"6ŝŜ34+Ĳ5"6ŝŜ34"""""""*Vyq"ocvtkegu"ctg"kfgptical)  
       0 
             *5"6"ŝŜ34+Ĳĵ5"6ŝŜ34"""""*Ukorng"ocvtkz"fqgu"pqv"ocvej"cp"gpenqugf 
       1                              version of itself)  
             XGEģ)CDE)")FGH)"""""""""*Vyq"gngogpv"xgevqt"qh")CDE)")FGH+ 
             VEC 
       ABC DEF 
             ŝVEC                    (Length 2)  
       2 
             XGEĲ)CDEFGH)""""""""""""*Fqgu"pqv"ocvej"vjg"8"gngogpv"xgevqt 
       1                              'ABCDEF')  



APLX Language Manual  115 

  

The comparisons done by this operation are affected by ŢEV, the comparison tolerance value. 

See ı Match for more information on how the comparisons are done. 

 

Ĩ Enlist 

 
 

One-argument form  See also two-argument form Membership 

Enlist produces a vector containing every element from every item in its argument. None of the 

properties of an array are preserved -  rank, shape or depth. The result is always a simple vector. Note 
that empty vectors in the argument do not appear in the result. 

 
             Cģ*3"4"5+")CDE)"*6"7"8+ 
             ŝA                      (Length 3 vector contai ning 3 length 3  
       3                              vectors)  
             ŝĨA                     (Enlist produces one 9 element vector)  
       9 
             Dģ4"4ŝ*4"4ŝŜ6+")FGH)"*4"5ŝŜ8+"*9":";+ 
             B 
       1 2     DEF  
       3 4  
 
       1 2 3   7 8 9  
       4 5 6  
             ŝB 
       2 2  
             ĨB                      (Enlist produces a 16 element vector,  
       1 2 3 4 DEF 1 2 3 4 5 6 7 8 9  processing the rows first -  as ravel)  
             ŝĨB 
       16 

For simple arguments, enlist is the equivalent of the ravel (,) function. 

Enlist can be used for selective specification. 

 
             *ĨC+ģŜ;"""""""""""""""""*C"cu"cdqxg+ 
             A 
       1 2 3  4 5 6  7 8 9  
             ŝA                      (Shape preserved)  
       3 

 



APLX Language Manual  116 

  

Ĩ Membership 

 
 

Two-argument form  See also one-argument form Enlist 

Checks on whether a data element exists in the right argument. It returns 1 for each element of the left 

argument found in the right argument and 0 for each element of the left argument not found in the 
right argument. (This operation is affected by ŢEV. the comparison tolerance) 

The arguments compared need not have the same number of elements, nor need they have the same 

number of dimensions. The result has the same shape as the left argument. See ı (Match) for a 
discussion of the criteria which determine whether two data elements are considered the same. 

 
             6"Ĩ"6"6"7 
       1                             (1 means 4 is found in 4 4 5)  
             )C)"Ĩ")CDTCECFCDTC) 
       1                             (A is in ABRACADABRA)  
             'ABTCECFCDTC)"Ĩ")C) 
       1 0 0 1 0 1 0 1 0 0 1  

(Elements 1 4 6 8 and 11 of the left-hand argument occur in the right-hand argument.) 

 
             )C"D"E)"Ĩ")CDEFG) 
       1 0 1 0 1                     (The 0s represent spaces in 'A B C'  
                                      which don't occur in 'ABCDE')  
             34"46"58"Ĩ"8"34"3:"46"52"58 
       1 1 1                         (Vectors don't need to have the same  
                                      number of elements)  
             VCDNG"ģ"5"5"ŝ"3"4"5"6 5 6 7 8 9  
             5"8";"Ĩ"VCDNG 
       1 1 1  
             VCDNG"Ĩ"5"8";"""""""""""*Pqvkeg"vjcv"vjg"tguwnv"cnyc{u"jcu 
       0 0 1                          the same shape as the left - hand  
       0 0 1                          argument)  
       0 0 1  
             )6)"Ĩ"Ŝ32"""""""""""""""*Vjg"ejctcevgt")6)"fqgu"pqv"crrgct"kp 
       2""""""""""""""""""""""""""""""vjg"pwogtke"xgevqt"Ŝ32+ 
             PCOGUģ)LQJP)")OCT[)")JCTT[) 
             ŝNAMES                  (3 element vector)  
       3 
             'MCT[)ĨPCOGU""""""""""""*Pqpg"qh"vjg"6"ejctcevgtu")OCT[)"ctg 
       0 0 0 0                        elements in NAMES)  
             *ĵ)OCT[)+ĨPCOGU"""""""""*Vjg"uecnct"eqpvckpkpi")OCT[)"fqgu"gzkuv"kp 
       1                              NAMES)  
             NCOGUĨĵ)OCT[)"""""""""""*Vjqug""gngogpvu"qh"pcogu"yjkej"eqpvckp"vjg 
       0 1 0                          scalar 'MARY')  
             )OCT[)")LKO)")LQJP)"Ĩ"PCOGU 
       1 0 1                         ('JIM' not found in NAMES)  

 



APLX Language Manual  117 

  

ş Find 

 
 

Find searches for instances of the left argument within the right argument. A boolean result is returned 

with a 1 where the start of the left argument is found in the right argument. The shape of the result is 
the same as the shape of the right argument. 

 
             )OG)ş)HOME AGAIN'       (Find the pattern 'ME' in 'HOME AGAIN')  
       0 0 1 0 0 0 0 0 0 0  
             WEEK 
       SUNDAY 
       MONDAY 
       TUESDAY 
       WEDNESDAY 
       THURSDAY 
       FRIDAY 
       SATURDAY 
             )FC[)"ş"YGGM""""""""""""*Hkpf"vjg"pattern 'DAY' in WEEK)  
       0 0 0 1 0 0 0 0 0  
       0 0 0 1 0 0 0 0 0  
       0 0 0 0 1 0 0 0 0  
       0 0 0 0 0 0 1 0 0  
       0 0 0 0 0 1 0 0 0  
       0 0 0 1 0 0 0 0 0  
       0 0 0 0 0 1 0 0 0  
             YGGM"ş")FC[)""""""""""""*YGGM"pqv"hqwpf"kp")FAY' -  wrong rank)  
       0 0 0  

The arguments can be of any rank, but ş always searches for the whole of the left argument in the right 
argument. 

 
             *3"4+"*5"6+"ş")UVCTV)"*3"4"5+"*3"4+"*5"6+ 
       0 0 1 0                       (Search within nes ted vector)  
             MAT 
        1  2  3  4  5  
        6  7  8  9 10  
       11 12 13 14 15  
       16 17 18 19 20  
             *4"4ŝ9":"34"35+şOCV"""""*Ugctej"rcvvgtp"ku"c"ocvtkz+ 
       0 0 0 0 0                     (1 shows top left corner)  
       0 1  0 0 0  
       0 0 0 0 0  
       0 0 0 0 0  

See also the system function ŢUU for string search operations on vectors. 

 



APLX Language Manual  118 

  

Į Unique 

 
 

One-argument form  See also two-argument form Union 

Unique is used to remove duplicated items from a vector. The result is a vector containing all the 

unique items in the argument, in the order in which they first appear. The argument must be a vector 
(or scalar). 

When the argument is nested, an exact match in data and structure must be found before an item is 

removed as a duplicate. This operation is affected by ŢEV, the comparison tolerance. 

 
       Į)VJG"SWCNKV["QH"OGTE["KU"PQV"UVTCKPGF) 
THE QUALIYOFMRCSND 
 
      Į3"6"39"45"34"6"4"9";;"55"Ì3"6"39";;"322"323 
1 4 17 23 12 2 7 99 33 ¯1 100 101  
 
      Į)VJKU)")VJCV)")VJG)")QVJGT)")QVJGT)")VJCP)")VJKU)")CPF)")VJCV) 
 THIS THAT THE OTHER THAN AND  

See also the other 'set' operations: Į Union, ĭ Intersection and ~ Without . 

 

Į Union 

 
 

Two-argument form  See also one-argument form Unique 

Union returns all items which can be found in both the left and right arguments. The right argument 

can be of any shape or rank. The left argument must be a scalar or vector. The result is always a 
vector. 

The result first contains all the items in the left argument (in the order in which they appear), followed 

by all the items found in the right argument but not in the left argument. If a particular item appears 

more than once in the left argument, it will also appear more than once in the result. Equally, if a 

particular item does not appear in the left argument, but does appear multiple times in the right 
argument, it will appear multiple times in the result. 

This operation is affected by ŢEV, the comparison tolerance. 

 
       )VJG"SWCNKV["QH"OGTE["KU"PQV"UVTCKPGF)Į)JKR"JQR"FQYP"VQ"VJG"\QQ) 
THE QUALITY OF MERCY IS NOT STRAINEDPPWZ  
 
      3"6"39"45"34"4"9";;"55ĮÌ3"6"39";;"322"323 
1 4 17 23 12 2 7 99 33 ¯1 100 101  
 



APLX Language Manual  119 

  

      )VJKU)")VJCV)")VJG)")QVJGT)Į)QVJGT)")VJCP)")VJKU)")CPF)")VJCV) 
 THIS THAT THE OTHER THAN AND  
  
      Ţfkurnc{"*45"65"43+"*Ŝ7+"*4"4ŝ)DNQV)+"Į"*Ŝ7+"*)DNQV)+ 
ťĥţţţţţţţţţţţţţţţţţţţţţţţţţţţţţţţţţţţŦ 
Ť"ťĥţţţţţţţŦ"ťĥţţţţţţţţŦ"ťĥţŦ"ťĥţţţŦ"Ť 
Ť"Ť45"65"43Ť"Ť3"4"5"6"7Ť"ĦDNŤ"ŤDNQVŤ"Ť 
Ť"ŧ¡ţţţţţţţŨ"ŧ¡ţţţţţţţţŨ"ŤQVŤ"ŧţţţţŨ"Ť 
Ť""""""""""""""""""""""""ŧţţŨ""""""""Ť 
ŧĨţţţţţţţţţţţţţţţţţţţţţţţţţţţţţţţţţţţŨ 
 

See also the other 'set' operations: Į Unique, ~ Without and ĭ Intersection. 

 

ĭ Intersection 

 
 

Intersection returns a vector containing all those items in the left argument which can also be found in 

the right argument. The right argument can be of any shape or rank. The left argument must be a scalar 
or vector. The result is always a vector. 

The items are returned in the order in which they appear in the left argument. If a particular item 
appears more than once in the left argument, it will also appear more than once in the result. 

When the arguments are nested, an exact match in data and structure must be found for two items to 
be considered identical. This operation is affected by ŢEV, the comparison tolerance. 

 
       )VJG"SWCNKV["QH"OGTE["KU"PQV"UVTCKPGF)ĭ)CGKQW) 
EUAIOEIOAIE  
       Cģ)VJKU)")CPF)")VJCV)"""""""""""""""""""""""""""""""""""""""""""""""""" 
       Cĭ)V) 
                              ő (No match for the single character  T)  
       Cĭ)CPF) 
                              ő (No match for any of the three characters A N D)  
       Cĭĵ)CPF) 
 AND 
      3"6"39"45"34"4"9";;"55ĭ4"4ŝŜ6 
1 4 2  

See also the other 'set' operations: Į Unique, Į Union and ~ Without. 

 



APLX Language Manual  120 

  

~ Not 

 
 

One-argument form   See also Without 

The right argument must consist only of the numbers 1 or 0. The effect of ~ is to change each 1 to 0 
and each 0 to 1. 

 
             ~1 
       0 
 
             ~1 1 1 0                (Each 1 in a vector is changed to 0  
       0 0 0 1                         and each 0 to 1)  
 
             TABLE 
       1 1 1  
       0 0 0  
       1 0 1  
             ~TABLE                  (Each 1 in a matrix is changed to 0  
       0 0 0                          and each 0 to 1)  
       1 1 1  
       0 1 0  

 

~ Without  

 
 

Two-argument form  See also Not 

Without is used to remove items from a vector. Items in its left argument which are found in its right 

argument are removed from the result. When the arguments are nested, an exact match in data and 

structure must be found before an item is removed. The right argument can be of any shape of rank. 
This operation is affected by ŢEV, the comparison tolerance. 

 
             'ABCDEFGHIJKLMNOPQRSTUVWXYZ'~'AEIOU' 
       BCDFGHJKLMNPQRSTVWXYZ         (Vowels removed)  
             1 2 3 4 5 6 ~2 4 6  
       1 3 5                         (Even numbers removed)  
             'THIS   IS   TE XT'~' '  
       THISISTEXT                    (Removal of blanks -  ugg"cnuq"ŢFDT+ 
             Cģ)VJKU)")CPF)")VJCV)"""*Vjtgg"gngogpv"pguvgf"xgevqt+ 
             A~'T'  
       THIS AND THAT                 (No match for the single character T)  
             A~'AND'  
       THIS AND THAT                 (No match for the length three vector)  
             C¡ĵ)CPF) 
       VJKU"VJCV"""""""""""""""""""""*Ocvej"hqwpf"hqt"pguvgf"uecnct"ĵ)CPF)+ 
             A~'TH' 'AND'  
       THIS THAT  

See also the other 'set' operations: Į Unique, Į Union and ĭ Intersection. 



APLX Language Manual  121 

  

 

Ĭ Or 

 
 

Compares two arguments which must consist only of 0's and 1's. If either or both elements compared 
are 1's, the result for that comparison is 1. Otherwise the result for that comparison is 0. 

 
             3"Ĭ"3 
       1 
             3"Ĭ"2 
       1 
             2"Ĭ"2 
       0 
             2"2"2"3"2"Ĭ"3"3"3"3"2"""*Gcej"gngogpv"kp"c"xgevqt"ku"eqorctgf 
       1 1 1 1 0                      with the corresponding element in a  
                                      vector of equal size)  
 
             VCDNG"ģ"5"5ŝ"3"3"3"2"2"2"3"2"3 
             2"Ĭ"VCDNG"""""""""""""""*Gcej"gngogpv"kp"c"ocvtkz"ku 
       1 1 1                          compared with 0)  
       0 0 0  
       1 0 1  
 
             Ĭ\ 0 0 0 1 0 1 0         (The result is all 1's after the  
       0 0 0 1 1 1 1                  first 1)  

 

^  And 

 
 

Compares two arguments which must consist only of 0's and 1's. If both elements compared are 1's, 
the result for that comparison is 1. Otherwise the result for that comparison is 0. 

 
             1 ^ 1  
       1 
             1 ^ 0  
       0 
             0 ^ 0  
       0 
             0 0 0 1 1^1 1 1 1 0     (Each element in a vector is compared  
       0 0 0 1 0                      with the corresponding element in a  
                                      vector of equal size)  
 
             VCDNGģ5"5ŝ3"3"3"2"2"2"3"2"3 
             1^TABLE                 (Each element in a matrix is compared  
       1 1 1                          with 1)  
       0 0 0  
       1 0 1  
             ^/TABLE                 (Applies ^ to each row of the matrix.  
       1 0 0                          A 1 in the result shows that the  
                                      corresponding line contained only 1's)  
 
             ^ \ 1 1 1 0 1 0 1 0 1     (The re sult is all 0's after the first 0)  
       1 1 1 0 0 0 0 0 0  



APLX Language Manual  122 

  

 

Ś Nor 

 
 

Compares two arguments which must consist only of 0's and 1's. If neither element compared is a 1, 
the result for that comparison is 1. Otherwise the result for that comparison is 0. 

 
             3"Ś"3 
       0 
             3"Ś"2 
       0 
             2"Ś"2 
       1 
             2"2"2"3"2"Ś"3"3"3"3"2"""*Gcej"gngogpv"kp"c"xgevqt"ku"eqorctgf 
       0 0 0 0 1                      with the corresponding element in a  
                                      vector of equal size)  
 
             VCDNGģ5"5ŝ3"1 1 0 0 0 1 0 1  
             2"Ś"VCDNG"""""""""""""""*Gcej"gngogpv"kp"c"ocvtkz"ku"eqorctgf 
       0 0 0                          with 0)  
       1 1 1  
       0 1 0  

 

ś Nand 

 
 

Compares two arguments which must consist only of 0's and 1's. If either or both elements compared 
are 0's, the result for that comparison is 1. Otherwise the result for that comparison is 0. 

 
             3"ś"3 
       0 
             3"ś"2 
       1 
             2"ś"2 
       1 
             2"2"2"3"3"ś"3"3"3"3"2"""*Gcej"gngogpv"kp"c"xgevqr is compared  
       1 1 1 0 1                      with the corresponding element in a  
                                       vector of equal size)  
 
             VCDNG"ģ"5"5"ŝ"3"3"3"2"2"2"3"2"3 
             3"ś"VCDNG"""""""""""""""*Gcej"gngogpv"kp"c"ocvtkx is  
       0 0 0                          compared with 1)  
       1 1 1  
       0 1 0  

 



APLX Language Manual  123 

  

ŝ Shape of 

 
 

One-argument form  See also two-argument form Reshape 

Enquires about the shape of each dimension of the data in the right-hand argument. See also ı (depth) 
to enquire about the depth of an array. 

 
             ŝ 95 100 82 74 2        (A vector has 1 dimension, length.  
       5                              This vector is 5 elements long.)  
 
             ŝ 'SEA SCOUT'           (Counting the space, this vector  is  
       9                              9 elements long)  
             ŝ 'SEA' 'SCOUT'         (Two element nested vector)  
       2 
             TABLE                   (A matrix has two dimensions, height,  
       1 3 5 7 9                      which is t he number of rows, and  
       2 4 6 8 0                      width, which is the number of  
       8 6 4 2 1                      columns)  
             ŝ TABLE 
       3 5                           (This matrix has 3 rows and 5 columns)  
 
             ŝ 501                   (A single number or letter is like a  
                                      rqkpv0"Kv"jcu"pq"fkogpukqpu"uq"ŝ 
             ŝŝ501                    displays no answer, i.e. It returns a  
       0                              vector of size 0 -  an empty vector. An empty  
                                      vector, being a vector, has a size of 0)  

 

ŝ Reshape 

 
 

Two-argument form  See also one-argument form Shape of 

Forms the data in the right-hand argument into the 'shape' specified in the left- hand argument which 

must be a simple numeric scalar or vector. Excess elements are ignored. If there are not enough the 
data wraps around 

 
             4"5"ŝ"3"4"5"6"7"8"""""""*Vjg"pwodgtu"3"vq"8"ctg"vq"dg"hqtogf 
       1 2 3                          int o 2 rows and 3 columns)  
       4 5 6  
 
             5"8"ŝ")CDEFGHIJKLMN)""""*Vjg"34"ejctcevgtu")C)"vq")N)"ctg"vq 
       ABCDEF                         be formed into 3 rows of 6 columns.  
       GHIJKL                         Since there aren't enough differ ent  
       ABCDEF                         characters for 3 rows, the last row  
                                      repeats the first 6 characters)  
 
             4"4"ŝ"3"4"5"6"7"""""""""*Vjg"pwodgtu"3"vq"7"ctg"vq"dg"hqtogf 
       1 2                            into 2 rows of 2 columns. The super -  
       3 4                            fluous number is ignored)  
             5ŝ)CDE)"""""""""""""""""*Ukorng"tkijv"ctiwogpv+ 



APLX Language Manual  124 

  

       ABC 
             5ŝĵ)CDE)""""""""""""""""*Pguvgf"tkijv"ctiwogpv"ku"eqrkgf"5"vkogu+ 
       ABC ABC ABC 
             Zģ8""""""""""""""""""""""*C"ukping"pwodgt"ku"rwv"kp"Z"cpf"kvu"uk|g 
             ŝX                       is asked. Since the number has no dimensions  
                                      dimensions, the result is an empty vector)  
             Zģ3ŝ8""""""""""""""""""""Vjg"ucog"pwodgt"ku"rwv"kp"Z."dwv 
             X                        is formed into a 1 - element vector. When  
       6                              displayed, X contains 6, but its  
             ŝX                       size is 1 since it was defined as a  
       1                              vector and has the dimension of length)  

To produce an empty array (for example to initialise a variable) the right argument may be any value 

and the left argument must contain at least one zero (corresponding to the empty axis or axes of the 

result). 

 
             ŝ2"55ŝ5 
       0 33  
             ŝ2"67ŝ)C) 
       0 45  

The empty array has a prototype (see Chapter 1) which is the prototype of the right argument. 

If, conversely, the right argument is an empty array, the prototype of the right argument occupies each 
position of the result. 

 
             32ŝŜ2 
       0 0 0 0 0 0 0 0 0 0  
             )")?4"5ŝ))""""""""""""""*Pqvg"vjg"eqpxgpvkqp"qh"wukpi")) 
       1 1 1                          to indicate a character empty vector)  
       1 1 1  

Since a scalar has no shape, a scalar can be produced by using an empty vector left argument to ŝ< 

 
             Zģ*Ŝ2+ŝ3ŝ8""""""""""""""*Yg"fgnkdgtcvgn{"etgcvg"c"xgevqt"-  
             Z""""""""""""""""""""""""3ŝ8"-  which is then forced to be a  
       6                              sc alar  
             ŝŝX 
       0 

We could have equally used řŝ to produce the scalar (see Zilde). 

ŝ can be used for selective specification. 

 
             ALF 
       ABCDEFGHIJKLMNOPQRSTUVWXYZ 
             *7ŝCNH+ģ)00000)"""""""""*Hktuv"7"gngogpvu"ugngevgf"cnd used in  
             ALF                      the specification)  
       .....FGHIJKLMNOPQRSTUVWXYZ 

 



APLX Language Manual  125 

  

,  Ravel 

 
 

One-argument form  See also two-argument form Catenate, Laminate 

Ravel  

Ravel converts data into a vector. If applied to a scalar, it produces a one- element vector. If applied to 
a matrix or higher dimensional array, it produces a vector made from the elements in the array. 

 
             NUM ģ".56"""""""""""""""*56"ku"eqpxgtvgf"vq"c"3- element vector)  
             ŝ NUM                   (An enquiry about the size of NUM  
       1                              produces the answer, 1)  
             TABLE                   (TABLE contains 2 5 - row co lumns)  
       1 3 7 3 8  
       3 6 2 8 1  
             ,TABLE                  (TABLE is converted to a 10 - element  
       1 3 7 3 8 3 6 2 8 1            vector)  
             VYKIģ4"6ŝ)CDE)"3"4"*Ŝ5+"*4"4ŝŜ6+")FGH)"*4"4ŝ)ECTV)+"32404 
             TWIG                    (Nested matrix, shape 2 4)  
        ABC    1   2 1 2 3  
 
        1 2  DEF  CA 102.2  
        3 4       RT  
             ŝTWIG 
       2 4  
             ,TWIG                   (Ravel produces a nested vector)  
        ABC  1  2   1 2 3    1 2 DEF    C A 102.2  
                             3 4        RT  
             ŝ,TWIG 
       8 

See also the function Ĩ (enlist) which entirely removes nesting. 

Ravel with axis  

When used in conjunction with an axis specification, ravel can either increase or decrease the rank of 

its argument. Fractional axis specifications will increase the rank, whilst integer axis specifications 
will decrease the rank. 

A fractional axis specification must be not more than one less than the first dimension or not greater 

than one more than the last axis. A new axis of length 1 is added in a position governed by the value of 

the axis specification. As with other axis operations this is affected by the value of ŢKQ0 With ŢKQ set 
to 1, the default: 

 
             ŢIO  
       1 
             OCVģ4"4ŝŜ6 
             MAT 
       1 2  
       3 4  
    



APLX Language Manual  126 

  

          ,[.1]MAT                (Add a length 1 axis before the first  
       1 2                           axis)  
       3 4  
             ŝ,[.1]MAT               (Shape of result)  
       1 2 2  
             ,[1.1]MAT               (Add a length 1 axis between axes 1 and 2)  
       1 2  
 
       3 4  
             ŝ,[1.1]MAT              (Shape of result)  
       2 1 2  
             ,[2 .8]MAT               (Add a length 1 axis after the second axis)  
       1 
       2 
 
       3 
       4 
             ŝ,[2.8]MAT              (Shape of result)  
       2 2 1  

When used with an integer axis specification ravel will reduce the rank. The axes must be contiguous 

and in ascending order. 

 
             UCVģ4"5"4ŝŜ34 
             SAT 
       1  2  
       3  4  
       5  6  
 
       7  8  
       9 10  
      11 12  
             ŝSAT 
      2 3 2  
             ,[2 1]SAT               (Axes not in ascending order)  
      AXIS ERROR 
             ,[2 1]SAT  
             ^  

With a correctly formed set of axes, the rank of the result is one more than the difference between the 

rank of the right argument and the number of axes in the axis specification. The shape may be 

predicted by adding the lengths of the axes specified and combining the result with those axes left 
unspecified. 

 
             ,[1 2]SAT               (SAT is rank 3, two axes in the  
         1  2                         axis specification.)  
         3  4  
         5  6  
         7  8  
         9 10  
        11 12  
             ,[2 3]SAT               (Rank of result is 1+3 - 2 or 2, a matrix)  
         1  2  3  4  5  6  
         7  8  9 10 11 12  
             ,[1 2 3]SAT             (Three axes in the specification)  
       1 2 3 4 5 6 7 8 9 10 11 12    (Rank of result is 1+3 - 3 or 1, a vector)  
             ŝ,[1 2]SAT              (Shape of result from adding lengths of  
       6 2                            axes 1 and 2, plus length of axis 3)  



APLX Language Manual  127 

  

If the axis specification contains an empty vector, the result will have a dimension of length one added 
after the last dimension of the argument. 

 
             ŝ.]Ŝ2_UCV"""""""""""""""*Gorv{"xgevqt"czku"urgekhkecvkqp+ 
       2 3 2 1                       (Dimension added at the end)  

Ravel with axis can be used for selective specification: 

 
             ŝ(,[1 2]SAT)            (The variable SAT as used above)  
       6 2  
             *.]3"4_UCV+ģ8"4ŝ)CDEFGHIJKLMN) 
             SAT 
       AB 
       CD 
       EF 
 
       GH 
       IJ  
       KL 

 

,  Catenate, Laminate 

 
 

Two-argument form  See also one-argument form Ravel 

Catenate  

Catenate joins data items together. 

With single-element items and vectors, catenate works very simply. 

 
             10,66                   (2 numbers are joined to form  
       10 66                          a 2 - element vector)  
 
             '10 ','MA Y ','1985'     (3 vectors of characters are joined  
       10 MAY 1985                    to form an 11 - element vector)  

With matrices and other multi-dimensional arrays, catenate expects the dimension at which the join is 

made to be specified. (See [],  'axis'.) If no dimension is specified, the last dimension is assumed. ŗ 

(comma-bar) behaves in exactly the same manner as ,  except that the default dimension is the first. 
Again, if an axis is specified ŗ will use that axis. 

The dimension at which items are joined must be the same length. Thus if two matrices are joined 'at' 

the columns dimension, the columns must be the same length. If a scalar is joined to a matrix, it's 

repeated along the dimension at which the join takes place. The examples below assume ŢKQ is 1, the 
default. 

Given the following three matrices called A, B, and D 

 
 



APLX Language Manual  128 

  

             A                   B                   D  
       1  2  3  4           5  6               13 14 15 16 17 18  
       7  8  9 10          11 12               19 20 21 22 2 3 24  
             C ģ"C.D"""""""""""""""""*C"cpf"D"ctg"lqkpgf"vq"hqto"E. 
             C                        Since no dimension is specified,  
       1  2  3  4  5  6               the join is at the last dimension  
       7  8  9 10 11 12               ie the columns.   Note  that A and  
                                      B have the same number of rows.)  
 
             C,[1]D                  (C and D are joined at the  
        1  2  3  4  5  6              first dimension, ie at the rows.  
        7  8  9 10 11 12              Note that C and D have the same  
       13 14 15 16 17 18              number of columns.)  
       19 20 21 22 23 24  
 
             A,[1]0                  (A single number is joined to A.  
       1  2  3  4                     The join is at the row dimensio n.  
       7  8  9 10                     The number is repeated along that  
       0  0  0  0                     dimension.)  

Laminate  

Catenate can only produce a result of the same dimension but of enlarged shape -  a two-dimensional 

structure becomes a larger two-dimensional structure. Laminate joins two objects of identical shape 
and dimension to form a higher dimensional object. 

 
             'ABC',[0.5]'DEF'        (Two 3 - element vectors are joined  
       ABC                            to form a 2 - row, 3- column matrix.  
       DEF                            Note the figure in square brackets  
                                      and the fact that it is less than 1)  

Laminate creates a new object which has the same shape as the constituent parts except for the 
addition of a new dimension. 

So in the example above the original vectors are size 3. Their lamination produces a matrix of size 2 3. 

The dimension added by laminate is of size 2. This dimension is placed in respect to the old dimension 

according to the number in brackets. With ŢKQ set to 1, the default, if this number is less than 1, the 

size 2 dimension goes before the old dimension. So in the example above the 2 goes before the 
dimension of size 3, giving a 2-row 3-column matrix. 

If the number in brackets is greater than 1, the 2 goes after the old dimension. In the example below, 

1.5 is specified. The new dimension of size 2 therefore goes after the existing dimension of size 3, 
giving a 3-row 2-column matrix. 

 
             'ABC',[1.5]'DEF'  
       AD 
       BE 
       CF 

If ŢKQ is set to 0, then the examples above would be 

 
             'ABC',[¯0.5]'DEF'  

and 



APLX Language Manual  129 

  

 
             'ABC',[0.5]'DEF'  

respectively 

 

ŗ 1st axis catenate 

 
 

ŗ behaves in the same way as catenate (,), except that if no axis is specified, the FIRST axis is 
assumed rather than the last. 

 

Ń Reverse 

 
 

Reverses the order of the numbers or letters in the right-hand argument. (See also ŉ. the transpose 
function.) 

 
             Ń 1 2 3 4 5 6  
       6 5 4 3 2 1  
             Ń(1 2) (3 4) (5 6)      (The three element ar e reversed, but not  
       5 6  3 4 1 2                   their contents)  
             Ń 'BOB WON POTS'  
       STOP NOW BOB 
             TABLE 
       1 2 3 4 5  
       6 7 8 9 0  
             Ń TABLE                 (When applied to a matrix, it  
       5 4 3  2 1                      reverses the order within each  
       0 9 8 7 6                      row. You can use the operator [] -  
             Ń[1]TABLE                'axis' to make the rotation apply  
       6 7 8 9 0                      to a different di mension.)  
       1 2 3 4 5  

By default reverse, Ń. applies to the last dimension. Thus, above, TABLE was reversed about its 

columns. The first axis reverse, ķ. behaves exactly as Ń but operates by default about the first axis. 

Both will respond in the same way to the axis operator. The axis operator will depend on the setting of 
ŢKQ0 

 



APLX Language Manual  130 

  

Ń Rotate 

 
 

The numbers or letters in the right-hand argument are shifted by the number of places specified in the 

left-hand argument. The shift is to the left if the left- hand argument is a positive number and to the 
right if it's a negative number. 

 
             3"Ń"3"4"5"6"7"8"""""""""*Gcej"pwodgt"oqxgu"qpg"rnceg"vq 
       2 3 4 5 6 1                    the left. This displaces the first  
                                      number to the end of the line)  
             5"Ń")CDEFGHIJ)""""""""""*Gcej"ngvvgt"oqxgu"nghv"5"rncegu0 
       DEFGHABC                       This displaces the first 3 letters  
                                      to the end of the line)  
             TABLE 
       1 2 3 4 5  
       6 7 8 9 0  
             5"ŃVCDNG""""""""""""""""*Vjg"pwodgtu"kp"gcej"tqy"ctg"oqxgf 
       4 5 1 2 3                      3 places to the left. Equivalent to  
       ;"2"8"9":""""""""""""""""""""""5Ń]4_VCDNG+ 
             Ì4"Ń)CDEFGHGH'          (The negative number means a shift  
       GHABCDEF                       to the right. All letters are  
                                      moved 2 places right)  

Similar axis considerations apply to rotate. By default Ń applies to the last dimension (as in the 

example above. First axis rotate, ķ. applies by default to the first dimension, but otherwise behaves 
similarly. 

Reverse and rotate can be used for selective specification. 

 

ķ 1st axis rotate 

 
 

ķ behaves in the same way as rotate *Ń+. except that if no axis is specified, the FIRST axis is assumed 
rather than the last. 

 



APLX Language Manual  131 

  

ŉ Transpose 

 
 

Monadic (one-argument) form:  

Transpose reverses the order of the axes of an array. Thus the first row of a matrix becomes the first 

column and vice versa, and similarly for arrays of more dimensions. It has no effect on scalars or 
vectors. 

 
             TABLE 
       1 2 3  
       6 7 8  
             ŉ TABLE 
       1 6  
       2 7  
       3 8  
             ŉ 1 2 3  
       1 2 3                          (Has no eff ect on a vector)  
             FCVC"ģ"34"6";"ŝ"Ŝ"654 
             ŝ DATA 
       12 4 9  
             ŝ ŉ DATA 
       9 4 12  
             FCVC]3==4_?*ŉFCVC+]4==3_ 
       1 1 1 1  

Dyadic (two-argument) form:  

Changes the order of the rows and columns in the right-hand argument according to instructions in the 

left-hand argument and selects a subset of the right argument. There must be as many elements in the 

left argument as there are dimensions in the right. This operation has most effect when applied to data 

which has more than two dimensions. There must be a number in the left-hand argument for each 

dimension of the result. The result can have any rank greater than zero and not greater than the right 

argument. Thus for a rank 3 result you must have the numbers 1 2 3 appearing at least once each in the 

left argument. The positions of the values within the left argument correspond to the axes of the right 
argument and the values of the left argument refer to the axes of the result. 

There are two cases to consider. The first is where all numbers in the left argument are unique. In this 
case all axes (and all elements) of the right argument appear in the result. 

 
             TABLE 
       1  2  
       3  6  
       9 10  
             2 1 ŉ TABLE             (First element of left argument shows that  
       1 3  9                         axis 1 of TABLE becomes axis 2 of result.  
       4"8"32"""""""""""""""""""""""""Ucog"cu"qpg"ctiwogpv"ŉ+ 
             3"4"ŉVCDNG""""""""""""""*Eq- ordinates stay in their original  
       1  2                           order so matrix is unchanged)  
       3  6  
       9 10  
             ŝDATA 
       12 4 9  



APLX Language Manual  132 

  

             ŝ5"3"4ŉFCVC"""""""""""""*3uv"czku"qh"FCVC"dgeqogu"5tf"czku"qh 
       4 9 12                         result, 2nd axis of DATA the 1st, etc)  
             FCVC]32=5=9_?*5"3"4ŉFCVC+]5=9=32_ 
       1 

When there are repetitions within the left argument, then the appropriate axes of the right argument 

will be mapped together and the rank of the result will be less than that of the right argument. Thus if 

the left argument to ŉ is 1 2 1 then axis 1 of the result is formed from axes 1 and 3 of the right 

argument. This is done by selecting those elements whose position is the same on those axes. The 
operation is selecting diagonals. A simple case is when a rank 1 result is specified (a vector): 

 
             TABLE1 
       1  2  
       3  4  
             3"3"ŉ"VCDNG3""""""""""""*Tguwnv"ku"vjqug"gngogpvu"yjqug"tqy"cpf 
       1 4                            column po sitions match -  [1;1] and [2;2])  
 
             ŝDATA 
       12 4 9  
             ŝ3"4"3ŉFCVC 
       9 4  
             FCVC]6=5=6_?*3"4"3ŉFCVC+]6=5_ 
       1 

If the axes that are being mapped together are of different lengths, those positions that are common are 
only as many as the length of the shortest axis. 

Transpose can be used in selective specification. 

 

Ĥ First  

 
 

One-argument form  See also two-argument form Take 

First selects the first item of its argument. When the argument is an empty array, first returns the 
prototype of the array. 

 
             Ĥ4"4ŝŜ6 
       1 
             Cģ*)C0U0HTGGOCP)+"57"37222 
             A 
       A.S.FREEMAN 35 15000  
             ŝA 
       3 
             ĤC""""""""""""""""""""""*Hktuv"kvgo"qh"C"ku"c"vgzv"xgevqt+ 
       A.S .FREEMAN 
             ŝĤA 
       11 
             VCDNGģ4"4ŝ*4"4ŝŜ6+"*Ŝ7+"*)VGZV)+"*)GXGP"OQTG"VGZV)+ 
    
 
 
 



APLX Language Manual  133 

  

          TABLE                   (2 row, 2 column nested array)  
        1 2   1 2 3 4 5  
        3 4  
 
       TEXT   EVEN MORE TEXT  
             ĤVCDLE                  (First item is a 2 by 2 numeric matrix)  
       1 2  
       3 4  
             ŝĤTABLE 
       2 2  

First can be used in selective specification. 

 

Ĥ Take 

 
 

Two-argument form  See also one-argument form First 

The left-hand argument of take specifies how many elements are to be selected from the right-hand 

argument in each of its dimensions. If the left-hand argument is positive, the elements are selected 
from the start of the appropriate dimension, if negative, from the end. The result is the data selected. 

 
             5 Ĥ")C0U0HTGGOCP) 
       A.S.F  
             Ì9"Ĥ")C0U0HTGGOCP) 
       FREEMAN 
             5"Ĥ"44"4"3;"34 
       22 2 19  
             Ì3"Ĥ"44"4"3;"34 
       12 
             NKUVģ*4"4ŝŜ6+"*Ŝ32+ 
             ŝĤLIST                  (Note that first removes dep th)  
       2 2  
             ŝ3ĤNKUV"""""""""""""""""*Vcmg"fqgu"pqv"chhgev"vjg"fgrvj+ 
       1 

If the left argument specifies more elements than the right argument contains, all elements are selected 

and the prototype of the array is added for each missing element: 

 
             7"Ĥ"62";4"33 
       40 92 11 0 0  
             Ì7Ĥ62";4"33 
       0 0 40 92 11  

If the right argument is a matrix, the first number in the left argument specifies the number of rows to 
be selected, and the second, the number of columns: 

 
             VCDNG"ģ"6"5"ŝ"Ŝ"34 
             TABLE 
        1  2  3  
        4  5  6  
        7  8  9  
       10 11 12  



APLX Language Manual  134 

  

             4"5"Ĥ"VCDNG"""""""""""""*Ugngevu"cnn"vjtgg"eqnwopu"qh"vjg 
       1 2 3                          first two rows)  
       4 5 6  
             Ì3"5"Ĥ"VCDNG""""""""""""*Ugngevu"cnn"vjtgg"eqnwopu"qh"vjg 
        10 11 12                      last row)  
             3"4"Ĥ"VCDNG"""""""""""""*Ugngevu"tqy"3."eqnwopu"3"cpf"4+ 
        1 2  

The overtake operation on matrices or higher dimensional arrays uses the prototype of the first 

element of each row already in existence to extend rows. New rows use the array prototype. 

 
             MAT 
         1 A  
         B 2  
             ŝMAT 
       2 2  
             5"5ĤOCV 
         1 A 0                       (Extension of row 1 uses row 1 prototype)  
         B 2                         (Row 2 prototype is a blank character)  
         0 0 0                       (Row 3 is new and uses the array prototype)  

Similar considerations apply to higher dimension arrays. Take can be used for selective specification. 

Take used with axis  

Take used with the axis operator will select only from the axes specified. Any axis not specified by the 

axis operator remains unchanged. Each successive element of the left argument indicates how many 
items to take from the corresponding axis within the axis specification (and from which end). 

 
             MAT 
         1  2  3  4  
         5  6  7  8  
         9 10 11 12  
             4Ĥ]3_OCV""""""""""""""""*Vcmg"vjg"hktuv"4"ogodgtu"qf the first  
         1 2 3 4                      dimension, the rows, and leave the number  
         5 6 7 8                      of columns unchanged)  
             5Ĥ]4_OCV""""""""""""""""*Hktuv"5"eqnwopu."vjg"ugeqpf"fkogpukqp+ 
         1  2  3  
         5  6  7  
         9 10 11  

Overtake will follow the same rules as for take (see above). 

 
             TABLE 
       1 A 2  
       B 3 4  
             5Ĥ]3_VCDNG 
       1 A 2                         (New row uses array prototype)  
       B 3 4  
       0 0 0  
             6Ĥ]4_VCDNG 
       1 A 2 0                       (Prototype of row 2 is the blank  
       B 3 4                          character)  

 



APLX Language Manual  135 

  

Ħ Drop 

 
 

The number of elements specified in the left-hand argument are dropped from the right-hand 

argument. If the left-hand argument is positive, the elements are dropped from the left-hand end, if 
negative, from the right-hand end. The result is the original data without the dropped elements. 

 
             6"Ħ")C0U0HTGGOCP)"""""""*Ftqru"vjg"hktuv"6"ejctcevgtu+ 
       FREEMAN 
             Ì8"Ħ")C0U0HTGGOCP)""""""*Ftqru"vjg"ncuv"8"ejctcevgtu+ 
       A.S.F  
             5"Ħ"44"4"3;"34""""""""""*Ftqru"vjg"hktuv"5"pwodgtu+ 
       12 
             Ì3"Ħ"44"4"3;"34"""""""""*Ftqru"vjg"ncuv"pwodgt+ 
       22 2 19  

If the left argument specifies more elements than the right argument contains, all elements are 

dropped: 

 
             7"Ħ"62";4"33 

The result is in fact an empty vector, as we see if we apply ŝ to the result: 

 
             ŝ 7"Ħ"62";4"33 
       0 

If the right argument is a matrix, the first number in the left argument specifies the number of rows to 
be dropped, and the second, the number of columns: 

 
             VCDNG"ģ"6"5"ŝ"Ŝ"34 
             TABLE 
        1  2  3  
        4  5  6  
        7  8  9  
       10 11 12  
             4"2"Ħ"VCDNG"""""""""""""""*Ftqru"vjg"hktuv"vyq"tqyu."dwv"PQ 
        7  8  9                        columns)  
       10 11 12  
              Ì5"2"Ħ"VCDNG"""""""""""""*Ftqru"vjg"ncuv"vjtgg"tqyu+ 
       1 2 3  
              3"4"Ħ"VCDNG""""""""""""""*Ftqru"vhe first row and the first  
        6                              two columns)  
        9 
       12 

Similar considerations apply to higher dimension arrays. Drop may be used for selective specification. 

Drop with axis  

Drop used with the axis operator will drop only from the axes specified. Any axis not specified by the 

axis operator remains unchanged. Each successive element of the left argument indicates how many 
items to drop from the corresponding axis within the axis specification (and from which end). 



APLX Language Manual  136 

  

 
             MAT 
         1  2  3  4  
         5  6  7  8  
         9 10 11 12  
             4Ħ]3_OCV""""""""""""""""*Ftqr"vjg"hktuv"4"ogodgtu"qh"vjg"hktuv 
         9 10 11 12                   dimension, the rows, and leave the number  
                                      of columns unchanged)  
             5Ħ]4_OCV""""""""""""""""*Ftqr"hktuv"5"eqnwopu."vjg"ugeqpf"fkogpukqp+ 
          4 
          8 
         12 

 

ĵ Enclose 

 
 

One-argument form  See also two-argument form Partition 

Enclose produces a scalar from its argument. If the argument is already a simple scalar the result is 
also a simple scalar, otherwise it has a depth of one greater than the argument. 

 
             VCDNGģ4"5ŝŜ8 
             TABLE 
       1 2 3  
       4 5 6  
             ıVCDNG 
       1 
             ŝĵTABLE                 (Enclose produces a scalar)  
                                     (Shape of a scalar is an empty vector)  
             ŝŝĵTABLE 
       0                             (Rank of scalar is 0)  
             ıĵVCDNG 
       2                             (Depth has been increased by 1)  

Enclose with axis  

When used with an axis specification, enclose will only enclose the axes indicated within the axis 
specification. 

 
             ĵ]3_VCDNG"""""""""""""""*Gpenqug"vjg""tqyu"."ngcxkpi"eqlumns)  
        1 4  2 5  3 6  
             ŝĵ[1]TABLE              (Result is length 3 vector)  
       3 
             ıĵ]3_VCDNG""""""""""""""*Fgrvj"kpetgcugf"d{"3+ 
       2 
             ĵ]4_VCDNG"""""""""""""""*Gpenqug"vjg""eqnwopu""ngcxkpi"tqyu+ 
        1 2 3  4 5 6  
             ŝĵ[2]TABLE              (Result is length 2 vector)  
       2 
             ıĵ]4_VCDNG""""""""""""""*Fgrvj"kpetgcugf"d{"3+ 
       2 



APLX Language Manual  137 

  

Enclose with axis can also be used to carry out a rearrangement of its argument (see also ŉ. transpose) 

by using a non ascending set of axes in the axis specification. Including all the axes in ascending order 
is equivalent to enclose. 

 
             ŝĵ]3"4_VCDNG""""""""""""*Ucog"cu"ĵVCDNG+ 
        EMPTY 
             ŝĵ[2 1]TABLE            (Scalar result)  
        EMPTY 
             ĵ]4"3_VCDNG"""""""""""""*Qtfgt"qh"czgu"tgxgtugf+ 
       1 4                           (Columns become rows within the first item  
       2 5                            of the result)  
       3 6  

When the axis specification is an empty vector, enclose with axis has no effect on a simple array, but 

with non-simple arguments increases the depth of the argument by 1. Each item of the argument is 
enclosed, but the overall shape is not altered. 

 
             ŝTABLE                  (TABLE , as above)  
       2 3  
             ıVCDNG""""""""""""""""""*Fgrvj"3+ 
       1 
             ŝĵ]Ŝ2_VCDNG"""""""""""""*Gpenqug"ykvj"gorv{"xgevqt"czku 
       2 3                            specification has no effect)  
             ıĵ]Ŝ2_VCDNG 
       1 
             VCDģ4"4ŝ*Ŝ5+"*Ŝ5+")CDE)")FG) 
             TAB                     (Nested matrix)  
        1 2 3  1 2 3  
        ABC    DE  
             ŝTAB                    (Shape 2 2)  
       2 2  
             ŝĵ]Ŝ2_VCD"""""""""""""""*Gpenqug"ykvj"gorv{"xgevqt"czku 
       2 2                            specification preserves shape)  
             ıVCD 
       2 
             ıĵ]Ŝ2_VCD"""""""""""""""*Kpetgcugu"fgrvj+ 
       3 

 

ĵ Partition (with axis)  

 
 

Two-argument form  See also one-argument form Enclose 

Partition will divide its right argument into an array of vectors according to the specification contained 

in its left argument. The left argument must be a scalar or a simple vector of integers that are either 

zero or positive, with one element for every item in the right argument. A new item is created in the 

result whenever the corresponding element in the left argument is greater than its predecessor. 

Elements in the left argument that are zero cause the corresponding items in the right argument to be 

omitted. If used without an axis specification, partition will select along the last axis. When used with 
an axis specification, selection takes place along the nominated axis. 

 
             3"3"4"4"5"5ĵ3"4"5"6"7"8 
       1 2  3 4  5 6                 (Result is 3 elemen t vector, with each  



APLX Language Manual  138 

  

             ŝ3"3"4"4"5"5ĵ3"4"5"6"7"8"gngogpv"c"ngpivj"4"xgevqt+ 
       3 
             3"3"2"3"3"2ĵ3"4"5"6"7"8 
       1 2  4 5                      (Do not select 3rd and 6th elements)  
             ŝ3"3"2"3"3"2ĵ3"4"5"6"7"8 
       2 
             OCVģ5"5ŝ)ECVUCVOCV) 
             MAT 
       CAT 
       SAT 
       MAT 
             ŝMAT 
       3 3  
             3"2"3ĵOCV"""""""""""""""*Ftqr"vjg"ugeqpf"eqnwop+ 
       C T  
       S T  
       M T 
             ŝ3"2"3ĵOCV 
       3 2                           (Result is nested array)  
             ŝÅ3"2"3ĵOCV 
        1  1  
        1  1  
        1  1  
             ıOCV 
       1 
             ı3"2"3ĵOCV 
       2                             (Depth increased by 1)  
             3"2"3ĵOCV 
        C T  
        S T  
        M T 
             3"2"3ĵ]4_OCV""""""""""""*Urgekhkecvkqp"qh""ncuv""czku"ku"vjg"ucog 
        C T                           as no axis specification)  
        S T  
        M T 
             3"2"3ĵ]3_OCV""""""""""""*Urgekhkecvkqp"qh""hktuv""czku"ecwugu 
        C A T                         selection by first axis -   rows )  
        M A T  
             ŝ3"2"3ĵ]3_OCV 
       2 3  
 
             3"4"5ĵOCV"""""""""""""""*Etgcvg"c"pgy"gngogpv""gxgt{""eqnwop+ 
       C A T  
       S A T  
       M A T  
             ŝ3"4"5ĵMAT 
       3 3  
             ıOCV""""""""""""""""""""*OCV"ku"fgrvj"3"-  a simple matrix)  
       1 
             ı3"4"5ĵOCV""""""""""""""*Vjg"rctvkvkqp"qh"OCV"ku"fgrvj"4"-  a nested  
       2                              matrix)  
             3"4"4ĵOCV"""""""""""    (MAT is partitioned into two columns,  
        C AT                          the first with one element, the second  
        S AT                          with two)  
        M AT 
             ŝ3"4"4ĵOCV 
       3 2  
             ŝÅ3"4"4ĵOCV 
       1  2  
       1  2  
       1  2  

 



APLX Language Manual  139 

  

Ķ Disclose 

 
 

One-argument form  See also two-argument form Pick 

Disclose will produce an array made up of the items in its right argument. If its argument is a scalar, 

then the result is the array that is within that scalar, and, in this form, disclose will reverse the effect of 
enclose. However, if the argument to disclose is a nested vector, the result will be a matrix. 

 
             VCDNGģ4"5ŝŜ8 
             ŝĵTABLE                 (Result of enclose is a scalar)  
                                     (Shape of a scalar is an empty vector)  
             ŝĶĵTABLE                (Disclose reverses the enclosure)  
       2 3  

The shape of the result of disclose is a combination of the shape of the right argument followed by the 
shape of the items in the right argument. 

 
             Ķ*3"4"5+"*6"7"8+"""""""""*Ujcrg"qh"ctiwogpv"ku"4."cpf"qh"gcej"kvgo 
       1 2 3                           within the argument is 3)  
       4 5 6  
             ŝĶ(1 2 3) (4 5 6)        (Shape of result is 2 3)  
       2 3  

In general, each item in the argument of disclose must be of the same rank, or be a scalar. If some of 

the items are scalar or have different shapes, they will be padded to a shape that matches the greatest 

length along each axis of all of the items in the argument. The prototype of each item in the right 
argument will be used as the fill item. 

 
             Ķ*3"4+"*5"6"7+"""""""""""*Hktuv"gngogpv"ngpivj"4."ugeqpf"ngpivj"5+ 
       1 2 0                          (First element padded to length 3)  
       3 4 5  
             Ķ*3"4"5+"*)CD)+""""""""""*Hktuv"gngogpv"ngpivj"5."ugeqpf"ngpivj"4+ 
       1 2 3  
       A B                             (Second element padded to length 3)  

This can be a simple way to make a matrix from a series of different length vectors (but see also 

ŢDQZ).  

 
             Ķ)LQG)")LCOGU)")LGTGO[) 
       JOE 
       JAMES 
       JEREMY 

Disclose with axis  

When used with an axis specification, disclose will combine the shape of the right argument and the 

shape of the items within the right argument according to the axis specification. The overall shape of 

the result is formed from the combination of the shapes as before, but the axis specification will 

indicate which axis or axes in the result will be formed from the shape of the items within the right 
argument.  

 



APLX Language Manual  140 

  

             NUMSģ*3"4"5+"*6"7"8+"*9":";+ 
             Ķ]3_PWOU"""""""""""""""""*Gngogpvu"qh"vjg"xgevqtu"ykvjkp"vjg"tkijv 
       1 4 7                           argument form rows in the result  
       2 5 8                           ith element becomes ith row)  
       3 6 9 
             Ķ]4_PWOU"""""""""""""""""*kvj"gngogpv"dgeqogu"kvj"eqnwop+ 
       1 2 3  
       4 5 6  
       7 8 9  

The same rules will apply for higher dimensional arrays. Thus when forming a rank 3 array from a 
vector of matrices:  

 
             FCVCģ*4"5ŝŜ8+"*4"5ŝ)CDEFGH)+ 
             DATA                     (Length 2 vector of shape 2 3 matrices)  
       1 2 3 ABC  
       4 5 6 DEF  
             Ķ]3"4_FCVC"""""""""""""""*Hktuv"cpf"ugeqpf"czgu"qh"tguwnv"ocfg"wr 
           1A                          from shap e of elements of right argument.  
           2B                          ith plane, jth row from ith row jth col  
           3C                          of each element of right argument)  
            
           4D 
           5E 
           6F              
             Ķ]3"5_FCVC"""""""""""""""*Hktuv"cpf"vjktf"czgu"qh"tguwnv"htqo"ujcrg 
           1 2 3                       of elements of right argument.  
           A B C                       ith plane, jth column from ith row jth col  
                                       of each element of right argument)  
           4 5 6  
           D E F  
             Ķ]4"5_FCVC"""""""""""""""*Ugeqpf"cpf"vjktf"czgu"qh"tguwnv"htqo"ujcrg 
           1 2 3                       of elements of right argument.  
           4 5 6                       ith row jth column from ith row jth column  
                                       of each element of right argument)  
           A B C  
           D E F  

Disclose with axis can also be used to carry out a rearrangement of its arguments (see also ŉ, 
transpose) by using a non ascending set of axes in the axis specification.  

 
             Ķ]5"4_FCVC"""""""""""""""*Ugeqpf"cpf"vjktf"czgu"qh"tguwnv"ocfg"wr 
           1 4                         from shape of elements of right argument.  
           2 5                         jth row ith column from ith row jth  
           3 6                         column of each element of right argument)  
            
           A D  
           B E  
           C F              

 



APLX Language Manual  141 

  

Ķ Pick 

 
 

Two-argument form  See also one-argument form Disclose 

Pick is used to select an item from its right argument according to the specification contained in its left 

argument. Each element in the left argument is used to specify successively deeper selections in the 

right argument. At each level of specification the element in the left argument being used must be of 
the appropriate shape -  a single number for a vector, a two element vector for a matrix and so on. 

 
             Aģ)HKTUV)")UGEQPF)")VJKTF) 
             ŝA                      (Three element vector)  
       3 
             4ĶC"""""""""""""""""""""*Rkem"vjg"ugeqpf"gngogpv+ 
       SECOND 
             4"5ĶC"""""""""""""""""""*Rkem"vjg"vjktf"gngogpv"qh"vjg"ugeqpf 
       C                              element)  
             Cģ*3")HKTUV)+"*4")UGEQPF)+"*5")VJKTF)+ 
             ŝA                      (Three element vector, with each element  
       3                              a two element vector)  
             5ĶC 
       3 TH IRD                       (Third element selected)  
             5"4ĶC 
       THIRD                         (Second element of third element selected)  
             5"4"3ĶC 
       T                             (First element of second element of third  
                                      element)  

When operating on arrays with two or more dimensions, care must be taken to ensure that the left 
argument to Ķ is correctly formed. 

 
             VCDNGģ4"4ŝ*Ŝ5+")PCOGU)"*4"4ŝ6"7"8"9+"*5"5ŝ)CDEFGHIJK)+ 
             TABLE 
       1 2 3  NAMES  
 
         4 5   ABC  
         6 7   DEF  
               GHI 

Selection of one of the outermost items from TABLE must be by means of a two element vector 

(given the shape of TABLE is 2 2), but this selection item must be formed as a scalar to indicate that it 

refers to the outmost layer. 

 
             1 2 ĶVCDNG 
       RANK ERROR 
             3"4ĶVCDNG 
             ^  

In the example above, the left argument to pick is interpreted as 'first element from outermost layer' 
then 'second element from next layer deep'. A correctly formed left argument is: 

 
             *ĵ3"4+ĶVCDNG 
       NAMES 



APLX Language Manual  142 

  

             *3"4+"4ĶVCDNG 
       A                             (Select row 1 column 2, then element 2)  
             *4"3+"*4"4+ĶVCDNG"""""""*Ugngev"tqy"4"eqnwop"3."vjgp"tqy"4 
       7                              column 2)  

Pick may be used with selective specification, in which case the whole array picked will be replaced 

by the object being assigned. 

 

ŀ Index 

 
 

The ŀ ('index') function selects from the array which forms its right argument according to the index 

array formed as its left argument. The left argument cannot be of depth greater than 2. Each element in 

the left argument addresses successive dimensions of the right argument and multiple index selections 

may be formed by creating a suitably nested vector. The dimensions specified in the left argument are 

used in the same order as with the ŝ function, that is columns last, preceded by rows and so on. Index 
is affected by the Index Origin *ŢKQ+0 

 
             4"ŀ"3"4"5"6"7"""""""""""*Uecnct"hqt"xgevqt"kpfgzkpi"-  only one  
       2                              dimension)  
             *ĵ5"6+ŀ"3"2 3 4 5       (Nested scalar for multiple index)  
       3 4  
             VCDģ4"7ŝŜ32 
             TAB 
       1  2  3  4  5  
       6  7  8  9 10  
             4"5"ŀ"VCD 
       8 
             4"*4"5+ŀ"VCD""""""""""""*Ugeqpf"gngogpv"qh"vjg"kpfgzkpi"xgevqt 
       7 8                            is the enclosed vector 2 3)  
             *3"4+"*4"5+ŀVCD"""""""""*Pguvgf"4"gngogpv"xgevqt"hqt"ownvkrng 
       2 3                            index. Result is rows 1 2 and columns  
       7 8                            2 3)  

If the index function is given an empty left argument, and a scalar right argument, it will return the 
scalar as the result. 

 
             *Ŝ2+ŀ59 
       37 

Index with axis  

Index can be used with an axis specification. In this case the left argument only applies to those axes 

specified. Other axes are not indexed. 

 
             4ŀ]3_VCD""""""""""""""""*Ugngev"vjg"ugeqpf"ogodgt"qh"vjg"hktuv 
       6 7 8 9 10                     dimension -  the rows)  
             *ĵ4"5+ŀ]4_VCD"""""""""""*Ugngev"vjg"ugeqpf"cpd third members of the  
       2 3                            second dimension -  the columns)  
       7 8  

 



APLX Language Manual  143 

  

Ŋ Grade up 

 
 

Grade up enables numbers or characters to be sorted into ascending order. The arguments to grade up 

must be simple and not mixed. The right argument is a simple numeric or character array containing 
the data you want to sort. A left argument may be used to specify a sort sequence for character arrays. 

The result is a vector which identifies elements by their position in the original data. For matrices or 

higher dimensional arrays, the sort is carried out on the first dimension. The result of grade up can be 

used to index the right argument into ascending order. Ŋ is affected by ŢKQ. the index origin. 

Identical elements or subarrays within the right argument will have the same relative positions in the 

result. 

One-argument form  

With the one-argument form, a numeric argument is sorted into ascending order. With a character 

argument ŢCX (the 'atomic vector') determines sorting order. It puts numeric characters before 

alphabetic characters and uses normal alphabetic order. So '1' is before (or less than) 'A', and 'A' is 
before 'Z'. 

 
             Ŋ13 8 122 4             (Produces vector showing ranking:  
       4 2 1 3                        4th number is first, 2nd number next)  
             (13 8 122 4)[4 2 1 3]   (Ranking order is used as an index  
       4 8 13 122                     to put numbers in ascending order )  
             Ŋ'ZAMBIA'               (Produces vector showing ranking.  
       2 6 4 5 3 1                    'A' in position 2 is first)  
             )\CODKC)]Ŋ)\CODKC)_"""""*Vjg"tcpmkpi"qtfgt"hqwpf"kp"vjg"]_)u 
       AABIMZ                         is used as an index to  
                                      put the characters in order)  
             TABLE                   (A 3 - row 3 - column matrix of names)  
       BOB 
       ALF 
       ZAK 
             ŊTABLE                  (Ranks the names in alpha order)  
       2 1 3                         (By row)  
             TAB 
       4 5 6                         (Sorts TAB by row)  
       1 1 3  
       1 1 2  
             ŊTAB 
       3 2 1  
             VCD]ŊVCD=_""""""""""""""*VCD"kp"cuegpfkpi"qtfgt+ 
       1 1 2  
       1 1 3  
       4 5 6  
             ARRAY                   (Three dimensional array is sorted by the  
        2  3  4                       first dimensions, the planes)  
        0  1  0  
 
        1  1  3  
        4  5  6  
 



APLX Language Manual  144 

  

        1  1  2  
       10 11 12  
             ARRAY[ŊARRAY;;]         (ARRAY in ascending order by planes)  
        1  1  2  
       10 11 12  
 
        1  1  3  
        4  5  6  
 
        2  3  4  
        0  1  0  
             NAMES                    (Three dimensional character array)  
       JOE 
       DOE 
 
       BOB 
       JONES 
 
       BOB 
       ZWART 
             ŊNAMES 
       2 3 1  
             PCOGU]ŊPCOGU==_ 
       BOB 
       JONES 
 
       BOB 
       ZWART 
 
       JOE 
       DOE 

Two argument form  

The two argument form can only be used with simple character arrays. The left argument specifies the 
collation order you want to use. 

 
             )\[ZYXWVUTSRQPONMLKJIHGFEDC)"Ŋ")\CODKC) 
        1 3 5 4 2 6                   (Collation order reversed. Compare  
                                      result with the e xample above)  

The system variable ŢC. containing the alphabet, and the function Ń are used to reverse the alphabet in 
the next example: 

 
             TABLE 
       BOB 
       ALF 
       ZAK 
             *ŃŢC+ŊVCDNG 
       3 1 2                         (Comp are with example above)  

When the left argument is a character matrix (or higher dimension array), more sophisticated sorts can 

be devised. When elements of the right argument are found in the left argument they are assigned a 

priority depending on their position in the collation array. For this purpose, the last axis of the 
collating array is deemed to have most significance, and the first the least significance. 



APLX Language Manual  145 

  

If elements in the right argument are not present in the collating array, they given priorities as if they 

were found at the end of the collating array and in the order of their occurrence in the unsorted right 
argument. 

A common use of a matrix collation sequence is to carry out a case-insensitive sort. In the following 

example, lowercase characters are used in the array to be sorted. (Some implementations of APLX 
will use underlined letters instead of lowercase letters). 

 
             DATA 
       ABLE 
       aBLE 
       ACRE 
       ABEL 
       aBEL 
       ACES 
             COLL 
       ABCDEFGHIJKLMNOPQRSTUVWXYZ 
       abcdefghijklmnopqrstuvwxyz  
             EQNNŊFCVC 
       4 5 1 2 6 3  
             FCVC]EQNNŊFCVC=_ 
       ABEL 
       aBEL 
       ABLE 
       aBLE 
       ACES 
       ACRE 

The collation array COLL contains lowercase characters in its second row. When the variable DATA 

is sorted, the first sort is by column order in the collation array. Thus rows in the matrix being sorted 

beginning with the letter 'A' or 'a' will be given highest priority, followed by 'B' or 'b' and so on for 

successive columns within the array being sorted. The next sort is by the rows of the collation matrix, 

and 'A' is given a higher priority than 'a' and so on. Contrast the example above, with a similar sort 
using a one dimensional (vector) collation sequence: 

 
             COLL1 
        AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz  
             FCVC]EQNN3ŊFCVC=_ 
       ABEL 
       ABLE 
       ACES 
       ACRE 
       aBEL 
       aBLE 

Here, all rows beginning with 'A' are given a higher priority to rows beginning with 'a'. 

 



APLX Language Manual  146 

  

ō Grade down 

 
 

Grade down enables numbers or characters to be sorted into descending order. The arguments to grade 

down must be simple and not mixed. The right argument is a simple numeric or character array 

containing the data you want to sort. A left argument may be used to specify a collation sequence for 
character arrays. 

The result is a vector which identifies elements by their position in the original data. For matrices or 

higher dimensional arrays, the sort is carried out on the first dimension. The result of grade down can 
then be used to index the right argument into descending order. ō is affected by ŢKQ. the index origin. 

Identical elements or subarrays within the right argument will have the same relative positions in the 

result. 

One-argument form  

With the one-argument form, a numeric argument is sorted into descending order. With a character 

argument ŢCX (the 'atomic vector') determines sorting order. It puts numeric characters before 

alphabetic characters and uses normal alphabetic order. So '1' is before (or less than) 'A', and 'A' is 
before 'Z'. 

 
             ō13 8 122 4             (Produces vector showing ranking: 3rd  
       3 1 2 4                        number is biggest, 1st is next etc)  
             (13 8 122 4)[3 1 2 4]   (Ranking order used as index to put  
       122 13 8 4                     numbers in descending order)  
             ō'ABRACADABRA'          (Produces vector showing ranking: 'R'  
       3 10 7 5 2 9 1 4 6 8 11        in position 3 is 'biggest', etc)  
             MG[ģō)CDTCECFCDTC)""""""*Vjg"tcpmkpi"xgevqt"ku"rwv"kp"MG[ 
             'ABRACADABRA'[KEY]       and is used as  an index to put the  
       RRDCBBAAAAA                    original data into descending order)  
             TABLE                   (A 3 - row 3 - column matrix)  
       BOB 
       ALF 
       ZAK 
             ō TABLE                 (Ranks the names in descend ing  
       3 1 2                          alphabetic order)  
             TAB 
       4 5 6                         (Sorts TAB by row)  
       1 1 3  
       1 1 2  
             ōTAB 
       1 2 3  
             VCD]ōVCD=_""""""""""""""*VCD"kp"fguegpfkpi"qtfgt+ 
       4 5 6  
       1 1 3  
       1 1 2  
             ARRAY                   (Three dimensional array is sorted by the  
        2  3  4                       first dimensions, the planes)  
        0  1  0  
 
        1  1  2  
       10 11 12  



APLX Language Manual  147 

  

 
        1  1  3  
        4  5  6  
             ARRAY[ōARRAY;;]         (ARRAY in descending order, by planes)  
        2  3  4  
        0  1  0  
 
        1  1  3  
        4  5  6  
 
        1  1  2  
       10 11 12  
 
             NAMES                    (Three dimensional character array)  
       JOE 
       DOE 
 
       BOB 
       JONES 
 
       BOB 
       ZWART 
             ōNAMES 
       1 3 2  
             PCOGU]ōPCOGU==_ 
       JOE 
       DOE 
 
       BOB 
       ZWART 
 
       BOB 
       JONES 

Two-argument form  

The two argument form can only be used with simple character arrays. The left argument specifies the 
collation order you want to use. 

 
             )\[ZYXWVUTSRQPONMLKJIHGFEDC)"ō)CDTCECFCDTC) 
       1 4 6 8 11 2 9 5 7 3 10       (Collation order reversed. Compare  
                                      results wit h the example above)  

The system variable ŢC. containing the alphabet, and the function Ń. are used to reverse the alphabet 
in the next example. 

 
             TABLE 
       BOB 
       ALF 
       ZAK 
             *ŃŢC+ōVCDNG 
       2 1 3                         (Compare with the example above)  

When the left argument is a character matrix (or higher dimension array), more sophisticated sorts can 

be devised. When elements of the right argument are found in the left argument they are assigned a 

priority depending on their position in the collation array. For this purpose, the last axis of the 
collating array is deemed to have most significance, and the first the least significance. 



APLX Language Manual  148 

  

If elements in the right argument are not present in the collating array, they given priorities as if they 

were found at the end of the collating array and in the order of their occurrence in the unsorted right 
argument. 

A common use of a matrix collation sequence is to carry out a case-insensitive sort. In the following 

example, lower case characters are used in the array to be sorted. (Some implementations of APLX 
will use underlined letters instead of lowercase letters). 

 
             DATA 
       ABLE 
       aBLE 
       ACRE 
       ABEL 
       aBEL 
       ACES 
             COLL 
       ABCDEFGHIJKLMNOPQRSTUVWXYZ 
        abcdefghijklmnopqrstuvwxyz  
             EQNNōFCVC 
       3 6 2 1 5 4  
             FCVC]EQNNōFCVC=_ 
       ACRE 
       ACES 
       aBLE 
       ABLE 
       aBEL 
       ABEL 

The collation array COLL places lower case characters in the second row of the collation matrix. 

When the variable DATA is sorted, the first sort is by column order in the collation array. Thus rows 

in the matrix being sorted beginning with the letter 'A' or 'a' will be given highest priority, followed by 

'B' or 'b' and so on for successive columns within the array being sorted. The next sort is by the rows 

of the collation matrix, and 'A' is given a higher priority than 'a' and so on. Contrast the example 
above, with a similar sort using a one dimensional (vector) collation sequence: 

 
             COLL1 
        AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz  
             EQNN3ōFCVC 
       2 5 3 6 1 4  
              FCVC]EQNN3ōFCVC=_ 
       aBLE 
       aBEL 
       ACRE 
       ACES 
       ABLE 
       ABEL 

 



APLX Language Manual  149 

  

ĺ Encode 

 
 

Represents a value in a given number system, for example, represents inches as yards, feet and inches. 

The left-hand argument gives the base, or bases of the number system you want to use, the right-hand 
argument is the value to be encoded. Both arguments must be simple numeric arrays. 

To convert 75 inches to yards feet and inches: 

 
             3982"5"34"ĺ"97""""""""""*Vjgtg"ctg"34"kpejgu"vq"c"hqqv."5"hggv 
       2 0 3                          to the yard, 1760 yards to a mile)  

Note: Since three numbers were required in the result (yards, feet and inches) three numbers were 

given in the left argument. If you don't put sufficient numbers in the left argument, you lose some of 
the result: 

 
             5"34"ĺ"97 
       0 3  

You can be sure of not losing any of the result by making the first element of the left argument a 
number greater than the number to be encoded. 

 
             322222"34ĺ97 
       6 3  

To express the base-10 number 100 in base-16 (hexadecimal) 

 
             38"38"38"38"ĺ322 
       0 0 6 4  

In addition, the right argument does not have to be an integer, and indeed ĺ can be a handy way to 
separate the fractional part of a number from the integer part. 

 
             3982"5"34ĺ9705 
       2 0 3.3  
             2"3ĺ9705""""""""""""""""(The second element of the left argument  
       75 0.3                         being 1 ensures that all of the right  
                                      argument except the fractional part  
                                      appears in the first elemen t of the result)  

Although the encode function is defined for scalar right arguments, it is possible to use encode with 

any array as the right argument. In this case the encode operation is applied to each element of the 

right argument to produce a vector result for each element. Similarly, if the left argument of ĺ is not a 

vector, but a higher dimensional array, then each base vector across the first axis of the left argument 

is applied to obtain the representation of each element of the right argument. The shape of the result is 
the same as the shape generated by an outer product operation, *ŝNGHVCTI+.ŝTKIJVCTI0 

To convert a series of values expressed as decimal numbers to their binary (base 2) equivalent. 



APLX Language Manual  150 

  

 
             4"4"4"4"4"ĺ"3"4"5"6"7 
       0 0 0 0  0                     (The vector left argument is applied to  
       0 0 0 0 0                      each element of the right argument. The  
       0 0 0 1 1                      results are displayed along the first  
       0 1 1 0 0                      a xis (rows) of the result)  
       1 0 1 0 1  

 

Ļ Decode 

 
 

Finds the value in units of a number represented in a particular number system, for example, how 

many inches are in one yard. In general, the result is a scalar value generated from a vector 
representation of a value. 

The left argument contains the base (or bases) of the number system being used. The right argument is 

a value represented in the given number system. A scalar left argument is treated as if it is a vector 

which matches the length of the right argument. Similarly, a scalar right argument is extended to 
match the length of the left argument. 

To reduce the vector 3 2 6 9 representing, say, the readings of the separate dials on a meter, to a single 
number: 

 
             10 Ļ"5"4"8";""""""""""""*32"ku"vjg"dcug"hqt"vjg"eqpxgtukqp+ 
       3269  

To convert a number represented in octal (base 8) to decimal: 

 
             :"Ļ"5"3"""""""""""""""""*Pqvg"vjcv"cu"dghqtg."vjg"tkijv"ctiwogpv 
       25                             is a vec tor)  

To reduce 1 yard 2 feet 8 inches to inches: 

 
             3982"5"34"Ļ"3"4":"""""""*34"ku"vjg"dcug"hqt"eqpxgtvkpi"hggv"vq 
       68                             inches, 3 is the base for converting  
                                      yards to feet. Fo r 1760 see the note  
                                      below)  

If both arguments to Ļ are vectors, they must contain the same number of elements. To make the left-

hand argument up to the same length as the right, an extra number was included: 1760 (the conversion 

factor for miles to yards) is irrelevant to the conversion of yards feet and inches to inches, and any 
other sufficiently large value could have been used instead. 

 
             4"4"4"Ļ"3"""""""""""""""*Vjg"3"ku"gzvgpfgf"vq"ocvej"vjg"ngpivj"qh 
       7                              the left argument)  

To reduce 2 pounds 15 shillings 6 pence and 3 farthings to farthings (4 farthings to one penny, 12 
pence one shilling, 20 shillings one pound): 

 
 



APLX Language Manual  151 

  

             2"42"34"6"Ļ"4"37"8"5 
       2667  

Again note the first number in the left-hand argument. Its only purpose is to make the arguments the 
same length. 

The more general form of decode allows both left and right arguments to be numeric arrays. When the 

left argument is an array of rank 2 or more, it contains a set of vectors which describe different bases 

to be used independently. Each base lies along the last axis of the left argument, and is applied to each 

of the vectors on the first axis of the right argument. Ļ follows the same rules as inner product, the 

length of the last axis of the left argument must match the length of the first axis of the right argument, 
and the shape of the result is given by deleting the two inner axes and joining the others in order. 

To convert a matrix of yards, feet and inches to inches: 

 
             TABLE 
       1  1  1                       (The numbers to be decoded lie along the  
       2  0  3                        first axis, so the first value is 1 yard  
       0  1  8                        2 feet 0 inches and so on)  
 
             1760 3 12 Ļ"VCDNG"""""""*Vjg"nghv"ctiwogpv"ku"crrnkgf"vq"gcej 
       60 37 80                       column of the right)  

 

š Picture format 

 
 

Displays the numbers in the right argument according to the instructions in the left argument. 

Numeric left argument  

š can be used in a similar way to the two-argument form of Ŏ0 (See Ŏ for more information and 

examples.) The main differences are: 

(a) If a number is too big for the field specified, '*'s  are displayed. 

(b) If the left argument is a single number, it specifies the number of characters in the field and no 
decimals are displayed. 

(c) If the left argument consists of the numbers 1 or 2, only the absolute value of the data will be 
displayed. 

(d) If any field width is specified to be 0, the result will not contain that column. 

Character left argument  

With š you can also define the way the data is to look by using editing symbols to build up the pattern 

you require. This 'picture' is enclosed in single quotes and forms the left-hand argument. Each number 



APLX Language Manual  152 

  

in the right-hand argument is displayed in the way defined by the picture. If the right argument is an 
array, each field in the specification is taken to apply to all of the relevant columns. 

You can have one picture for all the numbers on the right, or several pictures, one for each number. If 

several pictures are defined, each one must be separated by a semicolon (;). If there is nothing between 

two semicolons, the previous picture repeats. Any valid APL character except ; may appear in the left 
argument. 

Numeric Field Specification (9 Z)  

The main editing symbols are Z and 9. If a 9 is used in the picture, a digit is displayed at that position; 

if the position is blank, a zero is displayed. Z causes a digit, if present, to be displayed, but it does not 

display leading zeros. If no 9 is found in a picture, full zero suppression is assumed, but a single 

leading 9, or a 9 with Z on either side of it has the special effect of forcing a display only if there is 

any significance to the right of the 9. More than one leading or embedded 9 causes a DOMAIN 

ERROR. A space in the picture causes a corresponding space in the number and a point . in the picture 

inserts a decimal point if required by the format specification. Absence of a decimal point means that 
none will be printed. 

 
             );;;;)"š"323"37 
       0101 0015                      (Each number fills 4 positions -  no 
                                      space between numbers was allowed for)  
             )";;;;)"š"323"37 
        0101 0015                    (The space in the picture is put at the  
                                      beginning of each number. So if we  
                                      represent spaces by dots, we have:  
                                      .0101.0015)  
 
             )\\\\)"š"323"37"2"32 
       101  15      10               (Z suppresses non - significant zeros)  
 
             )\\\;0;;")"š"33""3403""35""04 
       11.00   12.10   13.00    0.20 (Three leading zeros are suppressed,  
                                      but a zero in the digits position is  
                                      displayed. The point is inserted)  
 
             )\\\;0\\)"š"32"05"025"2"022;"0225 
       10.00   0.30   0.03          0.01  (The 4th and 6th numbers do not print)  

A single or embedded residue symbol (|)  behaves exactly like a leading or embedded 9 except that it 

forces significance in the field immediately to the right. Only one |  may be used, and no 9s. 

 
                  )\\\~0\\)"š32"05"025"2"022;"0225 
       10.00    .30    .03           .01  (Note that there are no zeros  
                                           before the '.' this time)  

The floor symbol *ľ+ used in a field specification behaves like the decimal point (.) except that it 

specifies where the point will print, rather than where it actually is. If a ľ symbol is used in a 

specification, the decimal point of the right argument is assumed to be at the right of the field, and the 

fractional part of the right argument is never displayed. 

 
             )\\\\\;ľ;;)š34567809: 
       1234.57                       (The number is treated  as 123456 and the  
                                      . inserted before the last 2 digits)  



APLX Language Manual  153 

  

Commas and other text characters will print where indicated if significance has started before they are 

reached. Text following the last Z or 9 will only print if the value of the field is negative. If the picture 
is too small for the formatted value, *s  are used to fill the field. 

 
             'ZZZ,ZZ9.99;ZZ9.99 CR;ZZZ,ZZZ.ZZ' š 101789.356 ¯22 7777777  
       101,789.36 22.00 CR**********  
 
             )\;1;;1;;)š2332:8 
       1/10/86                       (A date formatter)  

Text may be placed between columns of the specification, and will repeat on every output line. The 
text must be placed within quotes (') and any number of such fields may be specified. 

 
             )\\;=))""XGTUWU""))=\\;)"š"4"4ŝ3"4"5"6 
         1  VERSUS    2  
         3  VERSUS    4  

Negative numbers, floating characters, fill characters  

The minus sign is not displayed unless specified in the picture (nor indeed is the plus sign). A +,  ¯,  or 

-  put at the beginning of the picture will cause the specified sign to be displayed where applicable. 

Negative numbers can alternatively be displayed in brackets, if brackets are placed round the picture. 
The symbols [],  (), Ģŗ and ĸĹ are treated as alternative ways of displaying the minus sign. 

The + sign or the various negative signs are shown at the very beginning of the relevant field. If you 

want the sign to appear immediately before the first displayed digit, use two of the signs at the 

beginning of the picture. This is known as 'floating' the character. Any character may be floated by 

placing it twice at the beginning of the picture. The second declaration is converted to a Z internally 
after the 'float' is noted. 

 
             ' - ZZ9.99 ' š 17 ¯2.3  
       17.00 -   2.30  
 
             )**\\0;;+")"š"39"Ì405 
       17.00 (2.30)  
 
             )&&\\;0;;"=&\\;0;;")š"57067"55097 
       $35.45 $ 33.75                (Floating versus fixed character)  

If a character is put at the beginning of a picture and followed by the |  symbol, it will be used as the 

fill character instead of the normal blank. Any character except . and |  may be used as a filler, and the 
declaration does not affect the resultant field length. 

 
             ),~&&\\.\\;0;;"Q1F")"š"Ì3174.57 303.75  
       ,,&3.396079"Q1F",,,,ĳ525097,,,,, 

 



APLX Language Manual  154 

  

Ŏ Format 

 
 

One-argument form  See also two-argument forms Format by specification, Format by example 

Ŏ ,  applied to any argument (character or numeric, simple or nested), converts it to characters 

according to the default display rules. (The formatted data may still look numeric since it is composed 

of the digits 0 to 9 together with suitable spaces and decimal points but it has the properties of 

character data and can be mixed in displays with other characters). The result is always a simple 

character array. 

 
             QTY ģ"3982"4 
             ŝ QTY                   (Asks the size of the data in QTY.  
       2                              Answer is 2 numbers.)  
 
             SV["ģ"Ŏ"SV["""""""""""""*Hqtocvu"fcvc"kp"SV[0+ 
             ŝ QTY                   (Asks the size of  the data in QTY.  
       6                              Answer is now 6 characters.)  
 
             )RTKEG"KU").Ŏ44ô3037""""*Vjg"pwogtke"fcvc"ku"hqtocvvgf"cpf"lqkpu"vjg 
       PRICE IS 25.3                  character data to form a simple character  
                                      vector)  
             FCVCģ*Ŝ5+"*4"4ŝŜ6+")VGZV)"322 
             DATA 
        1 2 3   1 2   TEXT 100  
                3 4  
             ŝDATA 
       4 
             FCVCģŎFCVC""""""""""""""*Hqtocv"rtgugtxgu"vjg"crrgctcpeg"qh"cp 
             DATA                     array, but makes it into a simple  
        1 2 3   1 2   TEXT 100        character array)  
                3 4  
             ŝDATA 
       2 24  

 

Ŏ Format by specification 

 
 

Two-argument form  See also one-argument form Format 

The right argument must be either a simple array, or have a maximum depth of 2 (no element higher 
rank than a vector). 

Like the one-argument form, this version of Ŏ also converts numeric data to characters. The right 

argument is formatted according to the instructions in the left argument which is a integer scalar or 

vector. These instructions specify the width of each field in characters, and the number of decimal 

places to be displayed. If necessary, numbers are rounded in order to display them in the positions 
available. 



APLX Language Manual  155 

  

If the first number in the left argument is 0, the system uses the specified number of decimal places, 

and as many other characters as are needed. If a single number is used for the left argument, it is 
treated as two numbers with the first set to 0. 

Scaled (or scientific) notation can be forced if the second number of a pair of numbers in the left 

argument is negative. In this case, the negative number specifies the number of digits before the E 
character. 

To display each number on the right in a field which is 10 characters wide and has 2 decimal places: 

 
             10 2 Ŏ 13.8765390 6 87.213 23.1  
       13.88     6.00      87.21     23.10  
 
             TABLE 
       2.77       1.731     22.9  
       11         0.3301    2.3  

To display each column in TABLE as a 5-character field with no decimal places: 

 
             7"2"Ŏ"VCBLE 
        3   2    23  
       11   0     2  

To force scaled notation: 

 
             :"Ì4"Ŏ"903 
       7.1E000  

To specify the number of decimal places while allowing the rest of the number as many character 
positions as it needs (including one leading space): 

 
             2"4"Ŏ"4403;:9";;;03 
       22.20 999.10  
 
             ŝ 2"4"Ŏ"3309""""""""""""*Cumu"vjg"uk|g"qh"vjg"hqtocvvgf"pwodgt0 
       6                              It has been allocated 2 positions after  
                                      the p oint, plus the 4 positions needed  
                                      for the 2 integers, the point itself  
                                      and a leading space)  

Note: the above examples show a single pair of numbers in the left argument being applied in turn to 

each number in the right argument. The left argument can instead contain a separate pair of numbers 

(ie separate instructions) for each term on the right. 

 
             10 2 8 3 Ŏ 279.5547 10.1234  
       279.55     10.123  

Using ŢHE with format by specification  

Certain elements in the system variable ŢHE"Hqtocv"Eqpvtqn can influence the display generated by 
Ŏ when acting as 'format by specification'. In index origin 1: 

ŢHE]3_ specifies the character used for the decimal point. (. by default). 



APLX Language Manual  156 

  

ŢHE]6_ specifies the overflow character used for numbers too wide for the column width specified. (0 

by default, causing a DOMAIN ERROR on overflow). 

ŢHE]8_ specifies the negative number indicator. (¯  by default). 

 
             ŢFC 
       ,,*0_¯                        (Default settings)  
 
             7"5Ŏ3222""""""""""""""""*FQOCKP"GTTQT"hqt"qxgthnqy"d{"fghcwnv+ 
       DOMAIN ERROR 
             7"5Ŏ3222 
             ^  
             ŢHE]6_ģ),) 
             7"5Ŏ3222""""""""""""""""*Cnvgtpcvkxg"qxgthnqy"ejctcevgt+ 
       *****  
             ŢHE]3_ģ).) 
             32"5Ŏ34037 
           12,150  
             ŢHE]8_ģ)1)""""""""""""""*Ejcpig"pgicvkxg"pwodgt"kpfkecvqt+ 
             32"5ŎÌ34037 
          /1 2,150  

 

Ŏ Format by example 

 
 

Two-argument form  See also one-argument form Format 

The right argument must be a simple numeric array. 

Like the one-argument form, this version of Ŏ also converts numeric data to characters. The right 

argument is formatted according to the instructions in the left argument which is a simple character 

vector. The left argument is used as a pictorial model of the format which should be applied to the left 

argument. 

The left argument can either be one field, in which case that field is used to format each element or 

column of the right argument, or a series of fields to be applied, one to each column of the right 
argument. Numbers will be rounded to fit into their formatted layout. 

A field is made up of characters drawn from the characters '0123456789' and . (full stop), ,  (comma) 

and a special 'print-as-blank' character, usually _ and set by ŢHE]7_0 Fields are separated by either one 

or more spaces or by a character identified as a field separator by a special indicator in the field. Any 

other characters used in the left argument are treated as decoratorƇ characters. Decorators may appear 
adjacent to the characters defining a field or within a field. 

In common with other formatters, format by example permits decorator characters to: 

-  Appear always 



APLX Language Manual  157 

  

-  Appear if the number being formatted is negative 

-  Appear if the number being formatted is positive 

-  Float against the number being formatted, that is appear immediately next to the front or back of the 

number when it is formatted 

The standard character used for format by example fields is 5, which is used to indicate simple 

formatting with removal of leading zeroes and suppression of trailing blanks. Zero values print as 
blanks. 

 
             '55.55' Ŏ22.234 1.398 11.00  
       22.23 1.4 11                  (Trailing blanks in 11 suppressed)  
             )77077"70777"77077"77)Ŏ440456"305;:"2022"3302 
       22.23 1.398       11          (0 prints as blank)  
             )777.777.777077)Ŏ34567890:; 
         1,234,567.89                (The , only appears between digits, leading  
                                      blanks are suppressed)  

The control character 5 does not print positive or negative indicators (+ or -) and indeed will not 
accept negative numbers. 

 
             '55.55' Ŏ ¯10  
       DOMAIN ERROR 
             )77077)ŎÌ32 
             ^  

Decorator characters which appear at the beginning or end of a field specification without special 
control characters will print where they appear in the left argument, they will not float. 

 
             )"UCNCT["KU"<"&777.777.777022)"Ŏ"34567890;7 
       SALARY IS : $  1,234,567.95   ($ decorator does not float)  

Negative numbers and floating decorators  

The field control characters 1 and 2 should be used if negative numbers are likely to be found in the 

right argument of Ŏ0 They will control any decorators which appear at the beginning or end of a field 

specification. These control characters will print their associated decorators if the number being 

formatted is negative (the character 1) or positive (the character 2). In addition the decorator will float 
against the number being formatted. 

 
             )Ì377077)"Ŏ3203"Ì340568"3307 
         10.1  ¯12.35  11.5          (Negative numbers with high - minus)  
             )*377077+)"Ŏ3203"Ì340568"33.5  
         10.1  (12.35) 11.5          (Negative numbers in brackets)  
             ŝ)*377077+)Ŏ3203"Ì340567"3307 
       24                            (Overall field size is the same, floated  
                                      characters which do not ap pear are replaced  
                                      by spaces)  
             )-477.777.777077)Ŏ"Ì323056"3222456"3503 
                101.34  +1,000,234            +13.1  



APLX Language Manual  158 

  

The control character 3 will purely float a decorator against a number being formatted, and will not 
accept negative numbers. 

 
             )VJG"DCNCPEG"KU"<"&777.777077)"Ŏ"32249056 
       THE BALANCE IS : $ 10,027.34  
             )VJG"DCNCPEG"KU"<"&777.777075)"Ŏ"32249056 
       THE BALANCE IS :  $10,027.34  

In the example above the currency sign is floated against the amount. Note that the overall field length 

is the same and that decorators which are not next to the field specification do not float . 

If the control characters 1, 2 or 3 appear in a field specification on their own they will apply to the 

decorators on both sides of the field. If two of these characters appear in a field specification, then 

each will apply to the decorators on its side of the number. In the example below, 1 acts with the 
minus sign on the left, 2 acts with the characters CR on the right. 

 
             ' -377.777074ET)Ŏ"323056"Ì322204;"375890568 
            101.34CR  - 1,000.29    15,367.35CR  

Finally, the control character 4 can be used to switch off the effect of the control characters 1, 2 or 3. 

In the example below, the 4 switches off the effect of the 1 such that, on the right of the numbers, the 
characters DEG always appear. 

 
             ' -37607FGI"")"Ŏ;70:"5407"Ì4904 
       95.8DEG    32.5DEG   - 27.2DEG 

Contrast the effect when the character 4 is omitted 

 
             ' -37707FGI"")Ŏ;70:"5407"Ì4904 
         95.8       32.5      - 27.2DEG 

In this example, the characters DEG print when the number is negative, under the control of the 
character 1. 

Leading and trailing zeroes  

The printing of leading and trailing zeroes can be forced by the control characters 0 and 9. One of 

these control characters placed in a field will indicate that 0s should be used up to that position. The 

effect of the 0 and 9 only differs in their treatment of the number 0. Control character 0 will print the 
appropriate number of 0s, control character 9 will use blanks. 

 
             '55.55  ' Ŏ21.1 27.25 33  
       21.1   27.25  33              (Trailing zeroes suppressed)  
             )77072"")Ŏ4303"49047"55 
       21.10  27.25  33.00           (Always print to two decimal places)  
             )7707277"")Ŏ4303"49034567"55 
       21.10    27.123 5  33.00       (0 only forces printing of zero up to its  
                                      position in the field)  
             )77022"")Ŏ4303"2"55 
       21.10    .00  33.00           (Control character 0 prints value 0)  
             )7707;"")Ŏ4303"2"53 
       21.10         33.00           (Control character 9 does not)  
 



APLX Language Manual  159 

  

             )277.777072)"Ŏ"322203 
       001,000.10                    (Leading zeroes forced)  

Cheque protection  

Control character 8 fills empty portions of a field with the contents of ŢHE]5_ (by default the *  
character). 

 
             )VQVCN"COQWPV"&5:7.777.777022)Ŏ3222 
       TOTAL AMOUNT $******1,000.00  

Alternative end of field delimiter and blanks within numbers  

It is sometimes useful to format numbers with no spaces between them. This may be achieved by use 
of control character 6 which can be used to mark the end of a field. 

 
             )7778128127")Ŏ5ĤŢVU"""""*Vjtgg"hkgnfu"kp"nghv"ctiwogpv"vq"Ŏ+ 
       1991/06/14  

Contrast the example above with the next example which inserts a decorator within a number being 
formatted. 

 
             )2777177177")Ŏ3;;32836""*Qpn{"qpg"hkgnf"kp"nghv"ctiwogpv"vq"Ŏ+ 
       1991/06/14  

The 'print-as-blank' character *ŢHE]7_ and _ by default) can be used to insert blanks between the 

digits of a number without ending the field. 

 
             )70777a777a777a777a777"")Ŏ"ű3 
       3.141 592 653 589 790  

Using ŢHE with format by example  

Certain elements in the system variable ŢHE"Hqtocv"Eqpvtqn can influence the display generated by 
Ŏ when acting as 'format by example'. In index origin 1: 

ŢHE]3_ specifies the character used for the decimal point. (. by default). 

ŢHE]4_ specifies the character used for the thousands indicator. (, by default). 

ŢHE]5_ specifies the fill character for empty portions of a field when 8 is used in the field 
specification. (*  by default). 

ŢHE]6_ specifies the overflow character used for numbers too wide for the column width specified. (0 
by default, causing a DOMAIN ERROR on overflow). 

ŢHE]7_ specifies the character to be used in the field specification to indicate that a blank should be 
inserted between the digits of a number. (The default is _).  

 
 



APLX Language Manual  160 

  

             ŢHE"""""""""""""""""""""*Fghcwnv"ugvvkpi"hqt"ŢHE+ 
       .,*0_¯  
             )77077)"Ŏ3222"""""""""""*FQOCKP"GTTQT"qp"hkgnf"qverflow)  
       DOMAIN ERROR 
             )77077)Ŏ3222 
             ^  
             ŢHE]6_ģ),)""""""""""""""*Qxgthnqy"ejctcevgt"ugv+ 
             )77077)"Ŏ3222 
       *****  
             ŢHE]3"4_ģ).0)"""""""""""*Tgxgtug"ejctcevgtu"wugf"hqt"fgekocn"rqkpv. 
             )777.777077"")Ŏ3392067"""vjqwucpfu"kpfkecvqt+ 
         1.170,45  
             ŢHE]5_ģ)~)""""""""""""""*Hknn"gorv{"rqukvkqpu"ykvj"~+ 
             )&:77777"")Ŏ3224 
       $||1002  

 

ŋ Execute 

 
 

Execute, followed by an APL text expression, causes the expression to be evaluated as if it had been 

entered at the keyboard in calculator mode. This has numerous applications, some of which are briefly 
summarized below. 

It can be used to turn character data, which contains numeric characters only, into numeric data: 

 
             LIST ģ")567"789) 
             ŝ LIST  
       7                             (LIST contains 7 characters.)  
             ŝ ŋ NKUV""""""""""""""""*NKUV"ku"gzgewvgf."cpf"ŝ"ku"crrnkgf"vq"vjg 
       2                              result -  2 numbers)  
 
             3"-"ŋ LIST              (This demonstrates that the  
       346 568                        executed form of LIST can be  
                                      used in arithmetic)  

It can be used as an alternative to branching in a user-defined function: 

 
       [4 ]   ŋ *NQQR?32+1)FCVCģFCVCô32) 

If LOOP does not equal 10 when line 4 is executed, the /  operator will give an empty vector to ŋ. and 

nothing will happen. If LOOP does equal 10, the /  operator will pass the character data to ŋ. and the 

value of DATA will be multiplied by 10 after execution. 

In APLX, system commands can be executed using the ŋ primitive: 

 
             ħNKD 
      ]3_"ő"Ujqy"eqpvgpvu"qh"nkdtct{"2 
      ]4_"ŋ)+NKD) 
      ]5_"ħ 

The output from executed system commands can be captured in a variable: 

 



APLX Language Manual  161 

  

            Zģŋ)+U[ODQNU) 
            X 
      IS 1026, USED 21  

ŋ can be used to execute single line function definition statements. The implicit result of the operation 
is an empty vector, as is the result of executing any statement which does not have a result. 

With an existing function called FUNCTION: 

 
             ŋ)ħHWPEVKQP]5_Cģ4ħ) 
             ŋ)ħHWPEVKQP]4_Dģ3)""""""*Pqvg"ŋ"uwrrnkgu"vjg"enqukpi"ħ+ 

With an existing function called FN: 

 
             ħHP]Ţ_ħ"""""""""""""""""*Hwpevkqp"ykvj"pq"tguwnv+ 
       ]3_"Cģ3"4"5 
             ħ 
             ŝFN 
       VALUE ERROR 
             ŝFN 
             ^  
             ŝŋ'FN'                  (Execution gives an empty vector result)  
       0 

 

Ĺ Stop 

 
 

One-argument form  See also two-argument form Left 

The monadic primitive function Ĺ (stop) takes a right argument of any type, rank and shape. It discards 

the argument, and always returns a result which is a (non-printing) empty matrix. It can therefore be 
used to discard an unwanted result from another function: 

 
      ĹŢmount 'c: \ temp'  

 

Ĺ Left  

 
 

Two-argument form  See also one-argument form Stop 

The function Ĺ (left) takes left and right arguments of any type, rank and shape. It discards the right 
argument, and passes the left argument through unchanged. 

It can be used as a statement separator, where (unlike using ļ diamond) the actual expressions are 
evaluated in normal APL right-to-left order: 

 
 



APLX Language Manual  162 

  

      zģ3"4"5"Ĺ"{ģ6"7"8"Ĺ"|ģ9":"; 
      x  
1 2 3  
      y  
4 5 6  
      z  
7 8 9  

 

ĸ Pass 

 
 

One-argument form  See also two-argument form Right 

The monadic function ĸ (pass) simply passes its argument through unchanged. The argument can be of 
any type, rank and shape; the result is identical. 

Although at first sight this does not appear very useful, it can be used to force the display of a result 

which otherwise would be non-printing: 

 
      ĸcģŜ32 
1 2 3 4 5 6 7 8 9 10  

 

ĸ Right 

 
 

Two-argument form  See also one-argument form Pass 

The function ĸ (right) takes left and right arguments of any type, rank and shape. It discards the left 

argument, and passes the right argument through unchanged. 

It can be used to embed pseudo-comments in an expression: 

 
      -1)Ucorngu"rgt"vguv)ĸ455"56:"4;9 
878  

 



APLX Language Manual  163 

  

Ţ Evaluated input 

 
 

If Ţ appears to the right of the ģ symbol or is referenced in some other way, it causes numeric input to 

be accepted from the keyboard and to be put into the variable named in the assignment. Valid APL 

expressions can also be entered whilst in Ţ input mode, and their results will be returned by Ţ0 System 

commands can also be entered whilst in Ţ input mode, and their results will be printed and the Ţ< 

prompt redisplayed. An empty input in response to Ţ input is not accepted, and the prompt is 
redisplayed. 

 
             RTKEG"ģ"34072 
             SV["ģŢ""""""""""""""""""*Ţ ecwugu"Ţ<"vq"dg"fkurnc{gf"cu"c 
       Ţ:                             prompt to the user to type a number.  
             50                       Here the user types 50. This is put in  
             'VALUE IS ' (PRICE×QTY) QTY and the expression is evaluate d)  
       VALUE IS 625  
 
             SV[ģŢ"""""""""""""""""""*Kh"vjg"wugt"v{rgu"cp{"gzrtguukqp 
       Ţ:                             yielding a numeric result, this is  
             50+50                    accepted.)  
             QTY 
       100  
 
             SV[ģŢ"""""""""""""""""""*Vjg"wugt"v{rgu"kp"c"xgevqt"qh"pwodgtu+ 
       Ţ:  
             1 2 3 4 5  
             QTY 
       1 2 3 4 5  
             3"4"5-Ţ"""""""""""""""""*Kprwv"ku"tgswguvgf"cpf"vjgp"wugf"kp 
       Ţ:                             the expres sion)  
             4 
       5 6 7  

 

Ţ Output with newline 

 
 

If Ţ appears to the left of the ģ symbol, it causes the result so far to be displayed. This may not be the 

result of evaluating the complete line as Ţ can occur anywhere on the line. The data is output together 

with a newline (carriage return) character, and is displayed subject to the values of printing precision 

*ŢRR+ and printing width *ŢRY+0 

 
             5-Ţģ;- 7 
       2                             (The intermediate result of 9 - 7)  
       5                             (The final result of 3+9 - 7)  
             Ţģ EQUVģ"4:ô7"""""""""""*Vjg"tguwnv"ku"rwv"kp"EQUV"dwv"ku"cnuq 
       140                            displayed)  
             EQFGģŢģŃ)FGCVJTQY 
       WORHTAED                      (Reversed 'DEATHROW' put in CODE and  
                                      displayed. Note characters are accepted)  

 



APLX Language Manual  164 

  

Œ Character input 

 
 

The Œ symbol causes the computer to accept data typed on the keyboard. Whatever is typed is treated 

as characters, even if it is made up of the digits 0 to 9. (See Ţ if you require numeric input, or 
alternatively use ŋ. (execute) to convert text data to numeric data.) 

Œ does not cause a carriage return when used for output. 

 
             CģŒ"""""""""""""""""""""*Vjg"ewtuqt"ku"rnceed at the beginning of  
       HELLO                          the next line and whatever is typed is  
                                      accepted.  Note there is no prompt. The  
                                      characters HELLO are put in A.  
             A                        the contents of A are displayed)  
       HELLO 
 
             ZģŒ 
       12                            (12 is put in X as a 2 - character data item)  
             X+5 
       DOMAIN ERROR                  (The 12 in X is two characte rs . Characters  
             Z-7""""""""""""""""""""""ecp)v"dg"wugf"kp"ctkvjogvke0"Ugg"ŋ"kh 
             ^                        you want to convert characters to numbers.)  

An extract from a user-defined function: 

 
       [3]  'PLEASE TYPE YOUR NAME.'  
       ]6_""PCOGģŒ"""""""""""""""""""*Vjg"tgurqpug"ku"rwv"kp"PCOG+ 
       [5]  'THANK YOU ',NAME        (The contents of NAME are  
                                      displayed after 'THANK YOU ')  

The dialogue will look like this: 

 
      PLEASE TYPE YOUR NAME.  
      REGINALD 
      THANK YOU REGINALD 

 

Œ Bare output 

 
 

In addition to its use for inviting and displaying keyboard input, Œ can be used to display values 

generated internally by APL statements, that's to say, a value or result can be assigned to Œ0 Bare 

output does not include a terminating newline (Carriage Return) character if it is followed by another 

bare output or character input. In addition, bare output does not include newlines if lines exceed 

printing width. Numeric values placed in Œ in this way (rather than from the keyboard) are treated as 

numeric. 

 
             CģŒģ3222 
       1000                          (Note that the value is displayed  
             A×3                      as well as being assigned to A)  



APLX Language Manual  165 

  

       3000  

An extract from a user-defined function 

 
       ]3_"""""Œ"ģ")RNGCUG"V[RG"[QWT"PCOG0") 
       ]4_"""""PCOGģŒ 
       [3]     'THANK YOU ',NAME  

The dialogue will look like this (the user types the name REGINALD) 

 
       PLEASE TYPE YOUR NAME. REGINALD 
       THANK YOU                       REGINALD. 

Note that there's no carriage return after the Œ on line 1 -  the name is typed in on the same line as the 
text. 

Note too the spaces when the name is output. The exact form of the result of Œ (here the variable 

NAME) will vary from implementation to implementation. In general, in a situation such as the one 

shown, APL notes the character position at which the response to Œ starts (REGINALD starts at 

position 24) and stores the response preceded by a corresponding number of blanks. So the characters 

REGINALD preceded by 23 blanks are put in NAME and are subsequently displayed. (The system 

function ŢFDT gets rid of blanks for you if you don't want them.) Check with your implementation 
notes issued in case the rules are different for your system. 

The system variable ŢRT (which is set to be a blank character by default) controls the characters used 

to replace the prompt. In the example above, if ŢRT was set to some other character, then that character 

would be used in place of the 23 blanks. If ŢRT was set to be an empty vector, then the actual prompt 
is returned. For more details see the entry for ŢRT0 

 

/  Reduction 

 
 

When used with a function operand the /  operator is known as Reduction (see the entry for 

Compression for the other functions derived from /).  The context in which the /  is used should make 

clear the operation being carried out. /  can be applied to any dyadic function ,  including user defined 

functions. When used with a scalar or one-element vector integer left argument, the /  operator is used 
to perform 'N-wise reduction'. 

The left operand of /  is inserted between all elements of the array right argument. In the absence of an 

axis specification, the operand is inserted between items along the last axis (see also the entry for [] ,  
the Axis operator). 

 
             +/ 2 4 6                (This is the same as 2+4+6)  
       12 
             UCNGUģ47"709":"72"323"96"3; 
             +/SALES 
       282.7                         (The sum of the numbers in SALES)  
             Ľ/82 66 93 1 5"""""""""""*Vjg"ucog"cu":4"Ľ"88"Ľ";5"Ľ"350 
       ;5"""""""""""""""""""""""""""""Vjg"tguwnv"qh";5Ľ35"ku"eqorctgf 



APLX Language Manual  166 

  

                                      with 66; the result of this comparison  
                                      is compared with 82; the re sult of the  
                                      last comparison is the largest)  
             Ĭ12"3"3"2"2"""""""""""""*Vjg"ucog"cu"2"Ĭ"3"Ĭ"3"Ĭ"2"Ĭ"2+ 
       1                             (Used to test if there are any 1s)  
             ^/0 1 1 0 0             (Are there any 1's?)  
             ,/ 'ABC' 'DEF' 'HIJ'  
        ABCDEFHIJ 
             ŝ,/'ABC' 'DEF' 'HIJ'    (Result is a scalar)  
        EMPTY 
             TABLE 
       1 2 3  
       4 5 6  
             ×/TABLE                 (Multiply is applied to t he elements  
       6 120                          of a matrix. Since no dimension is  
                                      specified, it works on the last  
                                      dimension, the columns. 6 is the  
                                      result of multiplying the columns in  
                                      row 1. 120 is the product of those  
                                      in row 2)  

/  applies by default to the last dimension, whilst the similar operator, ń. applies by default to the first 

dimension. 

 
             ×/[1]TABLE              (The [1] specifies that the operation  
       4 10 18                        is to apply across the 1st dimension,  
             ôńVCDNG""""""""""""""""""vjg"tqyu0"Gcej"gngognt in row 1 is  
       4 10 18                        multiplied by the corresponding  
                                      element in row 2.)  

N-Wise Reduction  

The definition of N-wise Reduction is very similar to the definition of Reduction. The left argument, 

an integer scalar or length one vector, is used to specify the length of successive subsets of the right 

argument on which the Reduction operation is performed. If the left argument is negative, each subset 
is reversed before the reduction operation is carried out. 

For a left argument of absolute value n and the selected axis of the right argument of length m, the 
number of subsets to which the reduction can be applied are: 

 
              1 + m -  n 

and thus the limiting case is where the sample size is 1 greater than the length of the selected axis, 

giving a empty result. 

 
             2+/ Ŝ10                  (Add up the numbers 2 at a time, starting  
       3 5 7 9 11 13 15 17 19         at the beginning of the vector)  
             7-1Ŝ32""""""""""""""""""*7"cv"c"vkog+ 
       15 20 25 30 35 40  
             32-1Ŝ32"""""""""""""""""*32"cv"c"vime -  the same as ordinary  
       55                             Reduction)  
             33-1Ŝ32"""""""""""""""""*Ucorng"uk|g"3"itgcvgt"vjcp"tkijv"ctiwogpv 
                                     empty result)  
             FCVCģ5"6ŝŜ34 
  
 
 



APLX Language Manual  167 

  

            DATA 
       1  2  3  4  
       5  6  7  8  
       9 10 11 12  
             2+/[2]DATA              (Add up 2 at a time across the columns  
       3  5  7                        the second dimension)  
      11 13 15  
      19 21 23  
             2+/[1]DATA              ( Add up 2 at a time across the rows, the  
       6  8 10 12                     the fist dimension)  
      14 16 18 20  
             NUMSģ32A32 
             NUMS 
      2 8 5 6 3 1 7 10 4 9  
             2- /NUMS                 (Subtract sucessive pairs of elements)  
      ¯6 3 ¯1 3 2 ¯6 ¯3 6 ¯5         (Reverse the elements before subtracting)  
             ¯2- /NUMS 
      6 ¯3 1 ¯3 ¯2 6 3 ¯6 5  
             2,/'AB' 'CD' 'EF' 'HI'  (Join elements, 2 at a time)  
      ABCD CDEF EFHI 
             3,/'AB' 'CD' 'EF' 'HI'  
      ABCDEF CDEFHI 

N-wise reduction is commonly used for moving averages. For example, if SALES is a vector of 
monthly sales figures, then 

 
             (12+/SALES)÷12  

gives the annualised moving average sales figures by month. 

 

ń 1st axis reduction 

 
 

/  applies by default to the last dimension, whilst the similar operator, ń. applies by default to the first 

dimension. 

 
             ×/[1]TABLE              (The [1] specifies that the operation  
       4 10 18                        is to apply across the 1st dimension,  
             ôńVCDNG""""""""""""""""""vjg"tqyu0"Gcej"gngogpv"kp"tqy"3"ku 
       4 10 18                        multiplied by the corresponding  
                                      element in row 2.)  

 



APLX Language Manual  168 

  

\  Scan 

 
 

When used with a function operand, the \  operator is known as 'scan'. The type of operation being 

carried out will be apparent from the context in which the symbol is used. Scan ( \ )  can be applied to 
any dyadic function, including user- defined functions. 

The left operand of \  is any dyadic function. The effect is as if the function had been entered between 

all the elements of the data. In the absence of an axis specification, the function is applied to the last 

dimension. (This is similar to /).  A given element of the result consists of the result of applying the 

function repeatedly over all the positions up to it. In each case the general rule for the order of 
execution is obeyed. 

 
             +\ 20 10 ¯5 7            (Compare with 20+10+¯5+7. The result shows  
       20 30 25 32                    the running totals and the final sum)  
             , \ 'AB' 'CD' 'EF'        (Repeated applications of ,)  
       AB ABCD ABCDEF 
             TABLE 
       5 2 3  
       4 7 6  
             ×\  TABLE                (Puts × be tween all elements of TABLE  
       5 10  30                       and shows the result of each  
       4 28 168                       multiplication in row 1 and in row 2.  
                                      Note that since no dimension was  
                                      specified, the operation takes place  
                                      on the last dimension, the columns.  
                                      See [] -  the axis operator)  
 
             ×ŅTABLE                 (First axis scan. Applies across each  
        5  2  3                       row, i.e. Down the columns. Same as  
       20 14 18                       × \ [1]TABLE)  
 
             ^ \  1 1 1 0 1 1          (Applies logical 'and' over all  
       1 1 1 0 0 0                    elements. A series of 1's is produced  
                                      up to the first 0. Shows where a test  
                                      first failed)  
 
             - \ 1 2 3 4               (The intermedia te results are  
       1 ¯1 2 ¯2                      1  
                                      1 -  2 
                                      1 -  2 -  3 
                                      1 -  2 -  3 -  4 

Useful examples of Scan include: 

 
             ^ \                        All 0 after the first 0  
             Ĭ\                        All 1 after the first 1  
             <\                        1 at the first 1  
             ĳ\                        0 at the first 0  
             İ\                        0 or 1,  reversing at each 1  

 



APLX Language Manual  169 

  

Ņ 1st axis scan 

 
 

\  applies by default to the last dimension, whilst the similar operator, Ņ. applies by default to the first 
dimension. 

 
             TABLE 
       5 2 3  
       4 7 6  
             ×\  TABLE                (Puts × betw een all elements of TABLE  
       5 10  30                       and shows the result of each  
       4 28 168                       multiplication in row 1 and in row 2.  
                                      Note that since no dimension was  
                                      specified, the operation takes place  
                                      on the last dimension, the columns.  
 
             ×ŅTABLE                 (First axis scan. Applies across each  
        5  2  3                       row, i.e. Down the columns. Same as  
       20 14 18                       × \ [1]TABLE)  

 

/  Compression, Replication 

 
 

When used with a simple numeric scalar or vector operand the /  operator is used to perform the 

compression or replication functions. The context in which /  is used will make the type of operation 
apparent. 

Compression  

The left argument is a vector of 1's and 0's. The right argument must conform in length but can be 

numbers or characters. With a matrix right argument the dimension on which the operator works must 

be of the same length as the left argument. For each 1 in the left argument, the corresponding element 

in the right argument is selected. For each 0, the corresponding element in the right argument is 

ignored. If a single 1 or 0 is used as the left argument, scalar extension ensures that none (0) or all (1) 
of the right argument is selected. 

 
             0 1 0 1 / 'ABCD'        (The lett ers in the same positions as  
       BD                             the 1's are selected)  
             1 1 1 1 0/12 14 16 18 20  
       12 14 16 18                   (20 corresponds with the only 0 and  
                                      is ignored)  
             OCTMUģ67"82"55"72"88"3; 
             RCUUģOCTMUĴ72"""""""""""*Gcej"octm"itgcvgt"vjcp"qt"gswcn"vq 
             PASS/MARKS               50 puts a 1 in PASS. Those less  
       60 50 66                       than 50 produce 0's. The numbers  
                                      corresponding to 1's are selected)  
             *OCTMU?72+1ŜŝOCTMU""""""*Yjkej"ogodgtu"qh"OCTM"ygtg"72A 
       4                              The fourth)  
             1/'FREDERIC'            (The 1 or 0 left argument to /  
       FREDERIC                       can be used to select whether the  



APLX Language Manual  170 

  

             0/'FREDERIC'             text is selected or not.)  
       (empty)  
             VCDNGģ4"5"ŝŜ8 
             0 1 0/TABLE             (Select on the last dimension - columns)  
       2 
       5 
             1 0/[1]TABLE            (Select on the first dimension - rows  
       3"4"5""""""""""""""""""""""""""ucog"qrgtcvkqp"cu"3"2ńVCDNG+ 

The form of /  shown with the text string FREDERIC is often used to control branching within 

functions. See the Reference section which covers Functions. The compression operation, /,  applies 

by default to the last dimension, although it may be used in conjunction with the axis operator, [].  

First axis compression, ń. applies by default to the first dimension, but again may be used together 

with the axis operator. Remember that the axis operator is affected by ŢKQ0 

Replicate  

This is used to generate multiple copies of elements of the right argument. In addition Replicate can be 

used either to replace a specified element with one or more instances of that element's prototype or to 

insert one or more instances of that dimension's prototype. Positive integers in the left argument 

specify how many copies of each corresponding element in the right argument are wanted. 

Negative integers in the left argument are used to insert or substitute prototypes. The two alternative 
mechanisms for this case are: 

(a) Length of left argument the same as the length of the selected dimension of the right argument. In 

this case, negative elements in the left argument specify that the corresponding element in the right 
argument should be replaced by the appropriate quantity of its prototype. 

(b) If the number of non-negative elements in the left argument is the same as the length of the 

selected dimension of the right argument, then negative elements in the left argument indicate the 

position and quantity of prototype elements to insert -  the prototype being used being that of the first 

element of the axis. 

As usual, a scalar left argument is extended to match the selected axis. If a replication is carried out 
along an axis of length 1, that axis will be extended. 

 
             2 ¯2 2/TABLE            (Replace second column of TABLE by  
       1 1 0 0 3 3                    2 columns of 0s -  the prototype)  
       4 4 0 0 6 6  
             2 ¯2 2 ¯2 2/TABLE       (Insert two sets of two columns of 0s)  
       1 1 0 0 2 2 0 0 3 3  
       4 4 0 0 5 5 0 0 6 6  
             VECģ3"4"*4"4ŝŜ6+"5"6 
             VEC 
        1 2   1 2   3 4  
              3 4  
              1 1 ¯2 1 1/VEC         (Insert two copies of the prototype of the  
        1 2   0 0   0 0   3 4         third element of VEC)  
              0 0   0 0  
              1 1 ¯2 1 1 1/VEC       (Insert two copies of the prototype of VEC)  
        1 2 0 0   1 2   3 4  
                  3 4  



APLX Language Manual  171 

  

 
             2 3 2 / 'ABC'  
       AABBBCC 
            2 / 'DEF'                (With a scalar left argument, the 2 is  
       DDEEFF                         is extended to each element on the right)  
             5 0 5 / 1 2 3  
       1 1 1 1 1 3 3 3 3 3  
             2/TABLE                 (TABLE as above. Replicate on last  
       1 1 2 2 3 3                    dimension)  
       4 4 5 5 6 6  
             4ńVCDNG"""""""""""""""""*Tgrnkecvg"qp"hktuv"fkogpukqp0"Ucog"cu 
       1 2 3                          2/[1]TABLE)  
       1 2 3  
       4 5 6  
       4 5 6  
 
             4"515"3ŝ)CDE)"""""""""""*Ncuv"czku."vjg"eqnwopu."ku"gzvgpfgf"vq 
       AAAAA                          length 5 to satisfy left argument)  
       BBBBB 
       CCCCC 
             4"Ì3"41]4_5"3ŝ)CDE)"""""*Ncuv"czku"gzvgpfgf"cpf"dncpm"eqnwop 
       AA AA                          inserted)  
       BB BB 
       CC CC 

 

ń 1st axis Compress, Replicate 

 
 

/  applies by default to the last dimension, whilst the similar operator, ń. applies by default to the first 
dimension. 

 
            VCDNGģ4"5"ŝŜ8 
            2/TABLE                  (Replicate on last dimension)  
       1 1 2 2 3 3  
       4 4 5 5  6 6  
             4ńVCDNG"""""""""""""""""*Tgrnkecvg"qp"hktuv"fkogpukqp0"Ucog"cu 
       1 2 3                          2/[1]TABLE)  
       1 2 3  
       4 5 6  
       4 5 6  

 



APLX Language Manual  172 

  

\  Expand 

 
 

When used with a simple numeric scalar or vector operand, the \  operator performs the function 

known as Expansion. The context in which the symbol is found should make it apparent which 
operation is being performed. 

Two-argument form only  

Inserts the array prototype. If the left argument consists of 1's and 0's, each 0 causes a space or 0 to be 
put in the corresponding position in the right argument. 

There must be as many 1's in the left argument as there are elements in the right argument. 

 
             1 1 1 0 1 1 1 \ 'PIGDOG'  (The 1's represent the existing  
       PIG DOG                        characters in the right argument.  
                                      The 0 shows where a space is to go)  
             TABLE 
       1 2 3 4  5  
       6 7 8 9 10  
             0 1 1 1 1 1 \  TABLE     (Each row is to have a 0 inserted  
       0  1  2  3  4  5               before the existing numbers. Note  
       0  6  7  8  9 10               that the last axis is assumed)  

The expansion function applies by default to the last axis, unless used in conjunction with the axis 

operator, []  (remember this is affected by ŢKQ+0 The first axis expansion function, Ņ. applies by 
default to the first axis, but otherwise behaves in the same way as the expansion function. 

 
             1 0 1 \ [1] TABLE        (Using the other axis, the  
       1  2  3  6""7""""""""""""""""""ucog"cu"3"2"3ŅVCDNG+ 
       0  0  0  0  0  
       6  7  8  9 10  

If the left argument includes numbers other than 1 or 0, a positive number specifies how many of the 

corresponding element to insert, and a negative number specifies the number of prototype elements to 

insert. There must be as many positive numbers in the left argument as there are numbers in the right 
argument. (See replicate under /).  

 
             1 0 3 ¯2 5 \  3 8 2       (1 copy of first element, then 1 prototype,  
       3 0 8 8 8 0 0 2 2 2 2 2        3 copies of second element, 2 prototypes  
                                      5 copies of third element.  
             VECģ*4"4ŝŜ6+"5"6"7"8""""*Rtqvqv{rg"ku"c"ukorng"pwogtke"ocvtkz 
             1 1 0 1 1 1 \ VEC          shape 2 2 and is used by expand)  
        1 2   3   0 0   4 5 6  
        3 4       0 0  

 



APLX Language Manual  173 

  

Ņ 1st axis expand 

 
 

The expansion function applies by default to the last axis, unless used in conjunction with the axis 

operator, []  (remember this is affected by ŢKQ+0 The first axis expansion function, Ņ. applies by 
default to the first axis, but otherwise behaves in the same way as the expansion function. 

 
             TADNG"ģ"4"7ŝŜ32 
             3"2"3"Ņ"VCDNG"""""""""""*Wukpi"vjg"qvjgt"czku."vjg 
       1  2  3  4  5                  same as 1 0 1 \ [1]TABLE)  
       0  0  0  0  0  
       6  7  8  9 10  

 

. Inner product 

 
 

Inner product takes the form: 

 
          DATA1  FN1 . FN2  DATA2  

Where the operands, FN1 and FN2, are both dyadic functions, including user- defined functions. Inner 

product first combines the data along the last axis of the left argument with the data along the first axis 

of the right argument in an 'Outer Product' operation with the right operand. Finally a 'reduction' 

operation is applied to each element of the result. 

If the two arguments are vectors of the same size, then the inner product gives the same result as FN2 

being applied to the data and then FN1 being applied to the result in a reduction operation. (See /  for 
reduction.) 

 
             Z"ģ"3"5"7"9 
             ["ģ"4"5"8"9 
             X +.= Y                 (This finds and totals the agreements  
       2                              between X and  Y)  

The above statement is equivalent to +/X=Y  and involves the following steps: 

 
             X=Y                     (Compares X and Y)  
       0 1 0 1                       (1 means agreement between elements)  
             +/0 1 0 1               (Sums t he agreements)  
       2 

Using the same values of X and Y as above: 

 
             X^.=Y                   (Returns a 1 if all elements in  
       0                              X equal all elements in Y)  
             X^.=1 3 5 7  
       1 



APLX Language Manual  174 

  

When applied to data of more than one dimension, such as matrices, the operation is more complex. 

For matrix arguments the shape of the result of the operation is given by deleting the two inner axes 
and joining the others in order. For example if we have: 

 
             TABA of 4 rows and  columns  
and          TABB of 5 rows and 6 columns  

The inner dimensions are used by the inner product operation, and the result will be a 4-row 6-column 
matrix. 

The operations take place between the rows and columns of the two matrices and are therefore the 
same as inner product operations between vectors as described above. 

 
             TABLE1                         TABLE2  
             1    2                         6  2  3  4  
             5    4                         7  0  1  8  
             3    0  
 
             RESULTģVCDNG3"-0ô"VCDNG4 
             RESULT 
       20   2   5   20  
       58  10  19   52  
       18   6   9   12  

The first number in RESULT is produced from row 1 of TABLE1 and column 1 of TABLE2. 

 
             1 2 +.× 6 7             (Equivalent to +/1 2 × 6 7 )  
       20 

Row 1 of TABLE1 is then used with each remaining column in TABLE2 to produce the first row of 

RESULT. Then row 2 of TABLE1 is used with each column of TABLE2 to produce the second row 

of RESULT and so on. So the 10 highlighted in row 2 of RESULT is derived from row 2 of TABLE1 
and column 2 of TABLE2: 

 
             5 4 +.× 2 0             (Equivalent to +/ 5 4 × 2 0)  
       10 

The operation shown above is the Matrix Multiplication operation. The operation can have non-scalar 
operands: 

 
             X 
       1 2 3  
       4 5 6  
             Y 
       1 2 3  
       4 5 6  
       7 8 9  
             X+.,Y                   (Columns of Y catenated to rows of X  
       18 21 24                       and the results added up)  
       27 30 33  
             ŝX+. ,Y  
       2 3  

Other useful combinations are: 



APLX Language Manual  175 

  

 
             A^.=B   Instances of vector B in matrix A  
             C`0İD"""Hkpfu"yjgtg"vjgtg"ku"pq"ukping"ocvej"qh"xgevqt"D"kp 
                     in matrix A  
             A+.=B   Gives a count of agreements between A and B  
             C-0ĨD"""Ikxg"c"eqwpv"qh"ogodgtujkru"qh"D"kp"C 

These may, of course be extended to higher dimensional arguments. The general definition of inner 
product is given below. For the inner product operation 

 
       DATA1 FN1.FN2 DATA2  

the result is defined as 

 
       HP31Å"*ĵ]ŝŝFCVC3_FCVC3+ĩ0HP4"ĵ]3_FCVC4 

 

ĩ0 Outer product 

 
 

This involves two data items and a function. The function can be any dyadic function, including user-

defined functions. The function operates on pairs of elements, one taken from the left argument and 
one from the right, till every possible combination of two elements has been used. 

 
             Z"ģ"4"5"6 
             ["ģ"3"4"5"6 
             Z"ĩ0ô"["""""""""""""""""*Ownvkrnkgu"gxgt{"pwodgt"kp"Z"d{"gxgt{ 
      2  4  6  8                      number in Y generating a multiplication  
      3  6  9 12                      table:  
      4  8 12 16                                 Y  
                                       |  1    2    3    4  
                                  X   2|  2    4    6    8  
                                      3|  3    6    9   12  
                                      4|  4    8   12   16  
 
             0 1 2 3 4 ĩ.! 0 1 2 3 4  
       1 1 1 1 1  
       0 1 2 3 4                     (Gives all possible combinations. See !)  
       0 0 1 3 6  
       0 0 0 1 4  
       0 0 0 0 1  

Note that this function always generates a result of one more dimension than the original arguments. 

Two vectors, for example, generate a matrix. 

 
             3"4ĩ0.Ŝ5""""""""""""""""*Eqodkpgu"gcej"gngogpv"qh"vjg"nghv"ctiwogpv 
          1 1  1 2 1 3                with successive elements of the right  
          2 1  2 2 2 3                argument u sing the , function)  
             ŝ3"4ĩ0.Ŝ5 
       2 3                           (Shape of result 2 3)  
             4"5ĩ0Ĥ3"4"""""""""""""""*Vjg"Ĥ.")vcmg)."hwpevkqp"ku"crrnkgf"wukpi 
            1 0   2 0                 successive elements of the left argu ment  
          1 0 0 2 0 0                 and right argument)  
             ŝ4"5ĩ0Ĥ3"4 
       2 2                           (Shape of result 2 2)  



APLX Language Manual  176 

  

The Outer Product will accept arguments of any shape and number of dimensions. The result will be 

an array whose shape is the shape of the left argument followed by the shape of the right argument. 
For example: 

 
             C"ĩ0ô"D 

where A is a matrix of 4 rows and 3 columns, and B is a matrix of 5 rows and 2 columns, will produce 
a result of shape 4 3 5 2 -  a four dimensional array. 

The result is as defined above, namely all possible combinations of the left and right arguments. The 
rule that shows the layout of the result is that, for 

 
             TģC"ĩ0>HWPEVKQP@"D""""""*yjgtg"C"cpf"D"ctg"ujcrgf"cu"cdqxg+ 

The result, R, has a shape 4 3 5 2 and 

 
             R[C;D;E;F]  is given by    A[C;D] <FUNCTION> B[E;F]  

 

¨  Each 

 
 

One-argument form  

The ̈  ('each') operator applies its operand to each element of its argument. In the case of a scalar 
operand, or a scalar function, each has no effect. 

 
             DAYSģ)OQPFC[)")VWGUFC[) 
             ŝ̈DAYS 
       6 7  
             FCVCģ*4"4ŝŜ6+"*Ŝ32+";905"*5"6ŝ)M)+ 
             ŝDATA                   (Length 4 nested vector)  
       4 
             ŝ̈DATA                  (Shape of each element, note empty vector  
          2 2  10    3 4              shape for element 3, the scalar)  
             ŝŝ̈DATA                 (4 shapes returned)  
       4 
             ŝÅŝÅFCVC""""""""""""""""*Vjg"ujcrg"qh"gcej"qh"vjg"ujcrgu"-  the  
          2  1  0 2                   ranks -  of e ach element)  

Two-argument form  

The two-argument form of each applies is left argument and its operand to each element of its right 

argument. Again, for empty left or right arguments, a fill function is applied. 

 
             (1 2 3),¨4 5 6          (Joini ng successive pairs of elements in  
        1 4  2 5  3 6                 the left and right arguments)  
             2 3 ĤÅ)OQPFC[)")VWGUFC[)"*4Ĥ"qh"hktuv"gngogpv"qh"tkijv"ctiwogpv 
        OQ"VWG""""""""""""""""""""""""5Ĥ"qh"vjg"ugeqpf+ 
             4ĤÅ)OQPFC[)")VWGUFC[)"""*Uecnct"gzvgpukqp"tguwnvu"kp"4Ĥ"qh"gcej 
        MO TU                         element of the right argu ment)  
 



APLX Language Manual  177 

  

             4"5ŝÅ3"4""""""""""""""""*4ŝ"qh"hktuv"gngogpv."5ŝ"qh"ugeqpf+ 
          1 1  2 2 2  
             6"7ŝÅ)VJG)")ECV) 
       THET CATCA 

 

[  ]  Axis 

 
 

The highest dimension of a data item is considered to be the first dimension and the lowest dimension 

the last . Thus the first dimension of a matrix is the rows and the last dimension is the columns. In the 

case of a three-dimensional object, the first dimension is the planes followed by the rows and columns. 

Axis numbers are governed by the Index Origin, ŢKQ. and in Index Origin 1, (the default), the first 

dimension is represented by [1],  the second by [2]  and so on. In Index Origin 0 the first dimension 

would be [0],  the second [1]  and so on. The number used to represent the axis is always a whole 
number, except for the ravel and laminate functions. 

The primitive functions and operators which will accept an axis specification include the dyadic forms 
of the primitive scalar functions : 

 
     + -  ô"Ĕ"~"Ľ"ľ","œ"ű"#"`"Ĭ"ś"Ś">"ĳ"?"Ĵ"@"İ 

and some primitive mixed functions : 

 
     ."ŗ"""""""Tcxgn1Ecvgpcvg1Ncokpcvg"""""""*pqvg"hktuv"czku"xctkcpv+ 
     Ń ķ       Reverse/Rotate                (note first axis variant)  
     ĵ"""""""""Gpenqug1Rctvkvkqp 
     Ķ"""""""""Fkuenqug 
     Ĥ"""""""""Vcmg 
     Ħ"""""""""Ftqr 
     ŀ         Index  

as well as the operators : 

 
     1"ń"""""""Eqortguu1Tgrnkecvg""""""""""""*pqvg"hktuv"czku"xctkcpv+ 
     1"ń"""""""Tgfweg""""""""""""""""""""""""*pqvg"hktuv"czku"xctkcpv+ 
     \  Ņ       Scan                          (note first axis varia nt)  
     \  Ņ       Expand                        (note first axis variant)  

Axis with scalar functions  

When used with dyadic scalar functions (see above) the axis operator is placed after the function. The 

axis specified is a scalar or vector of axis numbers such that the number of axes specified is the same 

as the rank of the argument with the lower rank and all the axes specified must be found in the 
argument with the higher rank. Thus, for example, if the following expression is typed 

 
              vect or  +[ AXES]   MATRIX  



APLX Language Manual  178 

  

the left argument ( vector) is rank 1 and the right argument ( matrix) is of rank 2. The axes specified ( 

axes) can only be a scalar or vector of length 1 and (in index origin 1) that axis can only be 1 or 2 (one 
of the two dimensions of matrix). 

 
             CģŜ5""""""""""""""""""""*Xgevqt"C+ 
             Dģ5"6ŝŜ34"""""""""""""""*Ocvtkz"D+ 
             A+[1 2]B                (Cannot have two axes specified with a  
       AXIS ERROR                     vector argument -  the left argum ent)  
             A+[1 2]B  
             ^  
             A+[3]B                  (3 is higher than the highest dimension  
       AXIS ERROR                     of B -  the higher rank argument)  
             A+[3]B  
             ^  
             A+[2]B                  (Axis specification is valid for length  
       LENGTH ERROR                   and value, but the length of A -  the  
             A+[2]B                   lower rank argument -  does not match the  
             ^                        size of the second  dimension of B -  the  
             A+[1]B                   columns)  
        2  3  4  5  
        7  8  9 10                   (A valid example)  
       12 13 14 15  
             B+[1]A                  (The left or right argument may be of  
        2  3  4  5                    higher rank)  
        7  8  9 10  
       12 13 14 15  
 
             MATģ4"5"6ŝŜ46 
             MAT 
        1  2  3  4  
        5  6  7  8  
        9 10 11 12  
 
       13 14 15 16  
       17 18 19 20  
       21 22 23 24  
             1 10×[1]MAT             (Vector multiplied across the first  
         1   2   3   4                di mension of MAT. Result has the same  
         5   6   7   8                shape as MAT)  
         9  10  11  12  
 
       130 140 150 160  
       170 180 190 200  
       210 220 230 240  
             VCDģ4"5ŝ3"7"32"32"72"322 
             TAB×[1 2]MAT            (Higher dimension example)  
          1    2    3    4  
         25   30   35   40  
         90  100  110  120  
 
        130  140  150  160  
        850  900  950 1000  
       2100 2200 2300 2400  
             TAB×[2 1]MAT            (Order of axes is immaterial)  
          1    2    3    4  
         25   30   35   40  
         90  100  110  120  
 
        130  140  150  160  
        850  900  950 1000  
       2100 2200 2300 2400  



APLX Language Manual  179 

  

Multiple axis specifications cannot contain repetitions. 

The next condition for axis with a scalar function is that the dimensions of the lower rank argument 

must be the same as the selected dimensions of the higher rank argument. When multiple axes are 
specified, they are used in ascending order, irrespective of the order in which they are entered. 

Thus, for the example above, if vector is of length 5 and the axis specified is 1 (rows), then matrix 

must have 5 rows. If the axis specified is 2, matrix must have 5 columns. 

Given correctly shaped arguments and valid axis specifications, the lower rank argument is applied 

across the dimensions of the higher rank argument specified by the axis operator. The result will have 

the shape of the higher rank argument. 

Axis with mixed functions and operators  

When an operator or mixed function which accepts the axis operator is applied to data, it works on the 

last dimension, unless another dimension is specified. Alternatively, you can use the 'first-axis' 

functions and operators (see Ravel, Catenate, Rotate, Compress, Expand, Scan and Reduce) which are 

specially defined to apply by default to the first dimension. To specify a different dimension, enclose 
the number representing the dimension in square brackets, and put it after the operator or function. 

 
             TABLE 
        1  2  3  4                   (TABLE has 2 rows and 4 columns)  
       50 60 70 80  
             +/ TABLE                (No dimension is specified, so the  
       10 260                         add takes place on the last  
                                      dimension, ie across the co lumns  
                                      giving the sums of the rows)  
             +/[1] TABLE             (The first dimension is specified  
       51 62 73 84                    so the add is on the rows,  
                                      giving th e sums of the columns.)  
 
             +\ TABLE 
        1   3   6  10                (The operator acts on the last dimension)  
       50 110 180 260  
 
             TABLE,13 14             (TABLE is joined with the vector 13 14.  
        1  2  3  4 13                 This takes place at the last dimension,  
       50 60 70 80 14                 the columns making a new column)  
 
             TABLE,[1] 13 14 15 16   (This vector is joined at the  
        1  2  3  4                    rows, making a new row.)  
       50 60 70 80  
       13 14 15 16  
 
             Ń TABLE                 (The rotation is across the  
        4  3  2  1                    columns. The same effect could be  
       :2"92"82"72""""""""""""""""""""cejkgxgf"d{"Ń]4_VCDNG+ 
 
             Ń[1]TABLE               (The rotation is across the rows)  
       50 60 70 80  
        1  2  3  4  

 



APLX Language Manual  180 

  

ř Zilde 

 
 

Zilde is a primitive constant, which contains an empty numeric vector. It is equivalent to Ŝ2 or 2ŝ2. 

 
      Zģř 
      ŝX 
0 
      Zı2ŝ2 
1 
      Zı)) 
0 
      ŢFKURNC["))"""""ő"Gorv{"ejctcevgt"xgevqt 
ťķŦ 
Ť"Ť 
ŧţŨ 
      ŢFKURNC["ř""""""ő"Gorv{"pwogtke"xgevqt 
ťķŦ 
Ť2Ť 
ŧ¡Ũ 
      5Ĥř 
0 0 0  

 

ļ Statement Separator 

 
 

The ļ ("diamond") character acts as a statement separator, which allows you to place multiple 

statements on a single line. This works either in a function, or in desk-calculator mode. The left-most 
statement is executed first: 

 
      SV[ģ6"ļ"RTKEGģ407"ļ"SV[ôRTKEG 
10 
      QTY 
4 
      PRICE 
2.5  

If an error occurs within one of the statements, execution is abandoned (the remaining statements are 
not executed). 

The statement separator can be used with structured-control keywords: 

 
      <Tgrgcv"5"ļ"$Pq#$"ļ"<Gpf 
No!  
No!  
No!  

 



APLX Language Manual  181 

  

ħ Line Editor  

 
 

ħ opens or closes function definition mode, a simple line editor (or 'del' editor) for editing functions, 

operators and classes. Although largely obsolete because APLX offers powerful on-screen editing 

facilities via the Edit menu or )EDIT , it is retained for compatibility with older systems. It is also 
sometimes useful for creating very small functions.  

Editing function s and Operators 

(For brevity, we use the word 'function' in this section to denote either user-defined functions or user-

defined operators). 

ħ followed by a name or function header (for a function which does not already exist in the 

workspace) opens definition mode. If the function already exists, you should follow it with just the 
name, not the full header.  

The editor prompts you with the next line number, in square brackets. (Note that the function header is 
line 0.) 

To enter a line for the line number which is being shown, just type the line. When you press Enter, the 
line will be fixed and you will be prompted with the next line number. 

By entering line numbers and other characters in square brackets, you can control the editor, as in the 
following examples:  

 
ħPCOG]Ţ_""Gpvgt"gfkvqt."qrgp"hwpevkqp"PCOG."nkuv"yjqng"hwpevkqp" 
]Ţ_"""""""Nkuv"hwpevkqp"*qpeg"{qw"jcxg"qrgpgf"kv+ 
]Ţ6_""""""Nkuv"htqo"nkpg"6"qpyctfu 
[3]       Overwrite line 3  
[3] ...   Overwrite line 3 immediately  
[5.1]     Insert new line after line 5  
[ Ģ2]      Delete line 2 from the function  
]6Ţ8_"""""Rnceg"ewtuqt"cv"nkpg"6."ejctcevgt"rqukvkqp"8 
]6Ţ2_"""""Rnceg"ewtuqt"cv"gpf"qh"nkpg"6 
]2Ţ2_"""""Rnceg"ewtuqt"cv"gpf"qh"vjg"hwpevkqp"jgcfgt 

To insert a line, use a fractional line number between the line numbers of the lines on either side of the 

insertion point. For example, [3.1]  will insert a line between existing lines 3 and 4 (and you will be 

prompted with [3.2]  as the next line). 

Note that you can edit the line number itself. This has the effect of copying the line to the new 
position, either inserting a new line, or overwriting an existing line. 

When you have finished editing, type another ħ character to end the edit session. Lines will be 

automatically re-numbered in sequence 1 to N, to allow for any insertions or deletions. 



APLX Language Manual  182 

  

Defining or editing a class using the line editor 

The line editor can also be used to create or edit a class, in much the same way as it is used to edit a 

function or operator. To define a new class, open the line editor by entering a line which begins with 

the del (ħ) character, is followed by the header line of the class (optionally including a parent class 

name and localized names, as per the canonical representation), and which ends with a left curly brace. 

APLX will open the class definition, and prompt you with the name of the class in curly braces as a 

reminder that you are in class-edit mode. For example, we can create a new class Sphere  which 

inherits from Point : 

 
      ħUrjgtg"<"Rqkpv"} 
{Sphere}:  

You can then define properties by entering lines in the same format as the canonical representation of 
a class. After each line, APLX prompts again with the class name enclosed in curly braces: 

 
      Tcfkwuģ2 
{Sphere}:  

You can also enter methods by using the del editor in the normal way (you will be prompted with the 

line number until you finish editing the method, then return to class-definition mode and again be 
prompted with the class name): 

 
      ħTģXqnwog 
[1]    Tģ30555555555555ô*ű3+ôTcfkwu,5 
[2]    ħ 
{Sphere}:  

Finally, exit from class-definition mode by entering a single right curly brace: 

 
      }  

The canonical representation of the class defined in this way would then be as follows: 

 
      ŢCR 'Sphere'  
Sphere : Point {  
Radkwuģ2 
 
ħTģXqnwog 
Tģ30555555555555ô*ű3+ôTcfkwu,5 
ħ 
}  

 

 



APLX Language Manual  183 

  

Ř Lock 

 
 

You can lock a user-defined function, operator or method by entering or leaving the line editor using 
the 'del-tilde' character (Ř) rather than 'del' (ħ). 

Once a function has been locked, it can be run, but cannot be edited or displayed. If you try to edit it, a 
DEFN ERROR will be reported. 

If execution of a locked function is stopped because of an error or interrupt, the function is never 

suspended, but instead is abandoned. Any error within a locked function will cause a DOMAIN 
ERROR to be signalled to the caller.  





APLX Language Manual  185 

 

Section 3: Errors 

 
 





APLX Language Manual  187 

 

Overview of error handling and the State Indicator 

 
 

Errors in calculator mode 

If you enter a statement containing an error in calculator mode, APL responds with an error message. 

For example, if you attempt an operation on unsuitable data, you normally get a domain error: 

 
      3"3"2"33"Ĭ"3"3"2"2 
DOMAIN ERROR 
      3"3"2"33"Ĭ"3"3"2"2 
      ^  

This error has occurred because the OR primitive function operates only on values 0 and 1, not 11 as 

supplied in the left argument. As the example shows, the statement containing the error is displayed 

with an error indicator (̂) marking the point at which the APL interpreter detected the error. 

Depending on the version of APLX you are running, and your system preference settings, error 

messages are usually displayed in red, as shown above. 

To correct an error in calculator mode, simply retype the statement correctly, or alternatively use the 

recall-line key (usually Ctrl-Up Arrow, or Cmd-Up Arrow on the Macintosh) to recal1 the statement, 

then edit it and re-enter it. In most versions of APLX, you can also correct it directly in the window, 
and then press Return or Enter to re-evaluate it. 

Errors in user-defined functions or operators 

If an error is encountered during execution of a user-defined function or operator, execution stops at 

that point. The appropriate error message is displayed in the session window, followed on a separate 

line, by the name of the function containing the error, the line number at which execution stopped and 
the statement itself: 

 
LENGTH ERROR 
ECNE]4_"Tģ*Z.[+- 1 2 3  
          ^  

The above example shows that execution stopped in function CALC at line 2. 

The Debug Window 

As well as displaying the error in the Session Window, desktop editions of APLX will normally 

display the Debug Window if an error occurs in a user-defined function, operator, or class method. 

This shows the function or operator in which the error occurred, and allows you to edit the line 
immediately and continue: 



APLX Language Manual  188 

  

 

In this example, an error has occurred on line 13 of the function, so execution has stopped there. 

Normally you would edit the incorrect line in situ (in this case correcting the spelling mistake 'jeva' 

instead of 'java'), and then press the Run button (the solid triangular arrow) to continue execution. You 

can also resume at a different line (by dragging the small green position indicator, currently on line 13, 

or by using the 'Resume at line' control), or abandon the function by pressing the Quit (red cross) 
button.  

Interrupts  

A function or operator can also be halted by the user hitting the interrupt key (usually Ctrl-Break on 

Windows, Cmd-Period on the Macintosh, or Ctrl-C under Linux). A single interrupt causes APLX to 

complete the line of code it is executing before stopping. Two interrupts in quick succession cause it 

to stop as soon as it can, even if it is executing a single calculation which takes a long time (for 
example inverting a matrix with Ł). The ŢEQPH system function allows interrupts to be disabled. 

Again, on desktop editions of APLX, the Debug window will appear if you interrupt a user-defined 

function, operator or method. 

The State Indicator 

It may be that the function at which execution halted was called by another function. You can inspect 

a system variable called ŢUK, the State Indicator, or use the system command )SI , to see the state of 
play: 

 
      ŢSI  
C[2] *  
B[8]  
A[5]  



APLX Language Manual  189 

  

This display (often referred to as the 'SI Stack') tells you that function C was called from line 8 of 
function B which was itself called from line 5 of function A. 

The asterisk on the first line means that the function named on that line is 'suspended'. The other 
functions are 'pendent'; their execution cannot be resumed till execution of function C is completed. 

If at this point you executed another function, D, which called function E, and at line 3 of E a further 

error occurred, the state indicator would look like this; 

 
E[3] *  
D[6]  
C[2] *  
B[8]  
A[5]  

Effectively it contains records of two separate sequences of events; 

 
E[3] *  
D[6]  
--------------- ----  
C[2] *  
B[8]  
A[5]  

You can clear the top level of the state indicator (i.e. the record of the most recent sequence) by 
entering the branch symbol ĥ on its own; 

 
      ĥ 
      ŢSI  
C[2] *  
B[8]  
A[5]  

In this example, another ĥ would clear the remaining level (now the top level) and restore the state 

indicator to its original (empty) state. 

Alternatively, you can clear the entire state indicator at any stage by using the system command 
)SICL . 

Action after suspended execution 

If you want to resume execution at the point where it stopped you can do so from the Debug Window 

as described above, or by using the symbol ĥ followed by the line number. If, for example, execution 
halted at line 3 of E, to resume at that point you could type: 

 
      ĥ5 

A system variable ŢEN contains the current line number, so you could achieve the same effect by 

typing: 

 
      ĥŢEN 



APLX Language Manual  190 

  

You don't have to continue from the point where execution was suspended. You can specify a line 
other than the current line: 

 
      ĥ6 

or 

 
      ĥŢEN-3 

Equally, you can specify execution of a different function. 

Editing suspended and pendent functions 

What's perhaps most likely after an error in execution of a function is that you'll want to edit the 

function containing the error. (It's marked with *  in the SI display and, as you may remember, is 

described as a suspended function.) This is done in the normal way by using )EDIT  (or using ħ and the 

function name to enter the del editor), and then making the required correction, or directly in the 
Debug Window. 

It is possible that after editing the function you may get this message: 

 
      SI DAMAGE 

This indicates that you've done something which makes it impossible for the original sequence of 

execution to be resumed. No action is necessary other than to use the system command )SICL  to clear 

the state indicator. 

What you cannot do after a halt in execution is to edit any of the pendent functions. They are the 
functions in the state indicator display that are not marked with an asterisk: 

 
      ŢSI  
E[3] *  
D[6]  
C[2] *  
B[8]  
A[5]  

An attempt to edit a pendent function using the Del editor will produce a DEFN ERROR: 

 
      ħC 
DEFN ERROR 
      ħC 
       ^  

Similarly, you can edit the function using )EDIT A  but APLX will not let you save the changes 

because the function is pendent. You will get the error message "Cannot fix object - Function is on )SI 
stack" 

If you want to edit a pendent function, simply clear the state indicator using )SICL . 



APLX Language Manual  191 

  

Error trapping  

You can specify in advance what should happen if an error occurs during execution, in which case that 

error will not cause execution to stop. For example, if you wrote a function which invited the user to 

type in some numeric data, you might foresee the possibility that he or she would type non-numeric 

data instead. This would cause an error. APLX allows you to 'trap' the error at runtime. There are two 
main ways of doing this: 

¶ A block of code (including any functions called from within the block) can be executed under 

error-trapped conditions using :Try ..:EndTry . If an error occurs, control passes to the 

:CatchIf  or :CatchAll  sections. 

¶ Simple error trapping on a single line or expression can be achieved using ŢGC, which allows 

an alternate line of code to be executed in the event of an error, or ŢGE, which executes code 

under error trapped conditions and returns a series of result codes. These are compatible with 
IBM's APL2. 

APLX also implements the older ŢGTZ style of error-trapping, which specifies a line to be branched to 

if an error occurs. Use of ŢGTZ is not recommended for new applications. 

In general, it is probably best not to mix different styles of error-trapping in a single function. 

However, if you do, and an error occurs in a line where more than one error trap is live, then the error 
trap which will take effect is the first of: 

1. ŢGC  
2. ŢGE 
3. :Try... :EndTry  
4. ŢGTZ  

Error -related system functions 

A number of system functions are available for finding out where an error occurred and why, or for 
simulating an error. These include: 

¶ ŢGTU which can be used to signal an error (see also the APL2-compatible equivalent ŢGU). 

¶ ŢGTO which displays the current error message (see also the APL2-compatible equivalent ŢGO). 

¶ ŢNGT which contains the error code and line number for the most recent error. Each kind of 

event that can be trapped has an error code. A DOMAIN ERROR, for example, is number 11. 
(See also ŢGV which holds the last error code in a format compatible with APL2). 

Other debugging aids 

¶ ŢUVQR allows you to set 'breakpoints', i.e. specify that a function should stop at a given line. 

(Normally, the Debug Window will then be invoked). On desktop editions of APLX, you can 

also set or clear breakpoints by clicking in the line-number area of an Edit, Debug or WS 
Explorer window. 

¶ ŢVTCEG can be used to display a record of the results when certain 'traced' lines are executed. 



APLX Language Manual  192 

  

Error trapping using :Try..:EndTry  

 
 

Syntax: 

 
:Try  
...  
:CatchIf <boolean expression>  
...  
:CatchAl l  
...  
:EndTry  

The block of code following the :Try  keyword is executed, until either an error occurs, or a 

:CatchIf , :CatchAll , :End  or :EndTry  is encountered. 

If no error has occurred within the :Try  block, execution transfers to the statement after the :End  or 

:EndTry .  

If an error occurs in the :Try  block (either in the statements in this function, or in any functions called 

from it), control transfers to the first :CatchIf  statement (if any), and the boolean expression is 

evaluated. If it is true, the block of code following the :CatchIf  is executed, and execution then 

resumes after the :EndTry  or :End . If the expression is false, the same procedure is followed for any 

further :CatchIf  blocks in the sequence. If none of the tests is true, the :CatchAll  block (if any) is 

executed. It is permissible to have as many :CatchIf  sections as you like. 

Once an error has been trapped and control passed to a :CatchIf  or :CatchAll  statement, the error 

trap is disabled. Thus, if a second error occurs, it will not be trapped, and the function will stop in the 

normal way (unless the whole :Try... :EndTry  sequence is itself executed under another error trap). 

:Try..:EndTry  blocks can be nested. 

Typically, you use the :CatchIf  statement to catch specific types of error, by looking at ŢNGT or ŢGV. 

For example: 

 
      ħTģC"FKXKFG"D 
]3_""ő"Rtqvgevgf"fkxkfg 
[2]   :Try  
]5_"""""ő"Fq"fkxkukqp"wpfgt"gttqt- trapped conditions  
]6_"""""TģCĔD 
]7_"""<EcvejKh"33?ĤŢNGT 
]8_"""""ő"FQOCKP"GTTQT"qeewttgf 
]9_"""""Tģ2 
[8]   :CatchAll  
];_"""""ő"Uqog"qvjgt"gtror occurred  
[10]    'Unexpected error. The message was:'  
]33_"""")").ŢGO 
]34_""""ĥ 
[13]  :EndTry  
      ħ"" 



APLX Language Manual  193 

  

 
      4 DIVIDE 3  
1.333333333  
      4 DIVIDE 0  
0 
      DIVIDE 4  
Unexpected error. The message was:  
 VALUE ERROR 
 FKXKFG]6_"""TģCĔD 
               ^  



APLX Language Manual  194 

  

Error Trapping *ŢGC. ŢGE+ 

 
 

Note: The use of ŢGC is now deprecated, unless you need to retain compatibility with IBM's APL2. For 

most cases, we recommend that you use the structured-control error trapping mechanism (:Try 

:CatchIf :CatchAll :EndTry ) instead. 

ŢGC and ŢGE provide statement-level error trapping, using a syntax which is compatible with IBM's 
APL2. 

ŢGC allows an APL expression to be executed under error trapped conditions. The right argument is a 

character vector containing an expression to be executed. The left argument is a character vector 

containing the APL expression to be executed if the right argument encounters an error or is 
interrupted. 

If an error occurs in the alternate code of a ŢGC call this is not trapped but is handled in the default (or 

non-trapped) manner. 

ŢGE allows an APL expression to be executed under error trapped conditions. The right argument is a 

character vector containing the line of code. If the expression contains an error or is interrupted then 
ŢGE returns a return code plus the error code given by ŢGV0 

ŢGV is a numeric vector containing the error code associated with the last error that occurred. The first 

integer indicates the general class of the error. The second integer indicates the specific nature of the 
error. ŢGV can be used to identify the possible source of an error. 

ŢGO is a character matrix containing the error message associated with the last error which occurred. 

The message contains the error description, the function name and line number where the exception 

occurred, the line of APL code where execution stopped, with a caret (^)  pointing to the last character 
interpreted. 

ŢGU is a function which simulates an error and causes execution of the active function or operator to 

stop. In the monadic form, the right argument is a two element numeric vector containing the error 

code. If the code is defined then the appropriate error description is displayed. If the code is undefined 

then no error description is displayed in the error message. If the right argument is zero or empty then 

no error is signalled. If the right argument is a character vector then that vector is displayed as the 

error description. In the dyadic form the left argument is the character vector error description and the 
right argument is the integer error vector. 

If an error occurs in a locked function then the error message just gives the name of the function, with 

no internal details. The error description will usually be DOMAIN ERROR (sometimes WS FULL or 

INTERRUPT). ŢGV similarly gives no indication of the true nature of the error. The same is true if a 

locked function calls an unlocked function which encounters an error. No internal details of the error 

are given. If a function containing a ŢGC or ŢGE statement is locked this does not affect the behaviour 
of the error handling internal to the function. 



APLX Language Manual  195 

  

In the first example, ŢGC is used to handle the error: 

 
             ħTģC"FKXKFG"D 
       ]3_"""Tģ)C)"ŢGC")CĔD) 
             ħ""" 
             3 DIVIDE 2  
       1.5  
             3 DIVIDE 0              (Alternate execution invoked -  returns  
       3                              left argument)  

As an alternative, ŢGU is used: 

 
             ħTģC"FKXKFG"D 
       ]3_""")CVVGORV"VQ"FKXKFG"D["\GTQ"GTTQT)"ŢGU*D?2+17"6 
       ]4_"""TģCĔD 
             ħ""" 
             3 DIVIDE 4  
       0.75  
             3 DIVIDE 0              (Error signalled)  
       ATTEMPT TO DIVIDE BY ZERO ERROR  
             3 DIVIDE 0  
             ^  
             ŢGO"""""""""""""""""""""*ŢGO"eqpvckpu"vjg"oguucig"ocvtkz+ 
       ATTEMPT TO DIVIDE BY ZERO ERROR  
             3 DIVIDE 0  
             ^  
             ŝŢEM 
       3 31  
             ŢGV"""""""""""""""""""""*ŢGV"eqpvckpu"vjg"crrtqrtkcvg"eqfgu+ 
       5 4  

Finally, controlled execution allows the results and error messages (if any) to be studied: 

 
             ŢEC '3÷4'  
       1  0 0  0.75  
             ŢEC '3÷0'  
       0  5 4  DOMAIN ERROR          (Three element nested vector result)  
                     3÷0  
                     ^  
             ŝŢEC '3÷0'  
       3 



APLX Language Manual  196 

  

Error Trapping *ŢGTZ+ 

 
 

Note: The use of ŢGTZ is now deprecated. We recommend that you use the structured-control error 

trapping mechanism (:Try :CatchIf :CatchAll :EndTry ) instead. 

The system function ŢGTZ allows you to set an error trap which will cause control to pass to a given 
line in a function, if an error occurs: 

 
             ħHQQ=\ 
       ]3_"""\ģŢGTZ"NCDGN""""""""\"yknn"eqpvckp"vjg"rtgxkqwu"xcnwg"qh"ŢGTZ 

Control will pass to LABEL when an error occurs in this function, (or a called function which does not 

have error trapping set). ŢGTZ returns the previous trap value. When an error occurs the normal error 

display of error message and line number is suppressed. A right argument of 0 to ŢGTZ suppresses the 
trap. 

A non-error trapped function, called by an error trapped function, will behave as if it is locked. A 
branch will again take place to the designated line in the calling function. 

Having transferred execution to an error handling routine, it is important to know the type of error that 

has occurred and also where it occurred. Sometimes the APL function can attempt some sort of 
corrective action, but often the error is logged and some message passed to the user. 

The function ŢNGT returns the error code number (see below) and the line where the error took place, 

as a two element vector. If, when error trapping is active, an error occurs, the line number will refer to 
the most recent function to which the error has been propagated (i.e. the error trapped function). 

To read the error message, the system function ŢGTO shows the character vector that APLX would 

normally print with a Carriage Return *ŢT+ between lines. Inside a locked function, ŢGTO will show 

the error message that would be displayed if the function were unlocked. Outside a locked function, 
however, ŢGTO is set to be an empty vector for security reasons. 

 
             ħHQQ=\=GT 
       ]3_"""\ģŢGTZ"GTT 
       [2]   100×'A'  
       [3]   'THIS LINE WILL NOT BE REACHED'  
       [4]   ERR: 'INTERNAL PROGRAM ERROR'  
       ]7_"""GTģŢT"ŢDQZ"ŢGTO"ő"HQTO"VJG"ŢGTO"XGEVQT"KPVQ"C"OCVTKZ 
       ]8_""")GTTQT"OGUUCIG<"").*GT]3=_+.)"QP"HWPEVKQP"NKPG").ŎŢNGT]4_ 
             ħ 

Example of Error Trapping  

It is possible to encounter the error message WS FULL if you try to carry out operations using large 

arrays. Rather than have your function stop, you might like to check for this error state and undertake 
corrective action. 

 



APLX Language Manual  197 

  

             ħCFFWR=Z=FCVC 
       ]3_""őCFFU"WR"CNN"VJG"PWODGTU"WR TO THAT ENTERED 
       ]4_""ZģŢGTZ"GTT"ő""""""""""""""Z"KU"WUGF"VQ"JKFG"VJG"TGVWTP"HTQO"ŢGTZ 
       [3]  START:'ENTER A NUMBER'  
       ]6_""FCVCģľŢ""ő""""""""""""""""OCMG"KV"VJG"PGZV"NQYGUV"KPVGIGT 
       ]7_"")VJG"UWO"QH"VJG"HKTUV").*ŎFCVC+.)"PWODGTU"KU< '  
       ]8_""-1ŜFCVC 
       ]9_""ĥ2"""ő""""""""""""""""""""GPF"QH"VJG"HWPEVKQP 
       ]:_""GTT<ĥ*3İ3ĤŢNGT+1TGCNGTT"ő"GTT"EQFG"3"KU"YU"HWNN 
       [9]  'THE NUMBER YOU ENTERED WAS TOO BIG TO USE, TRY AGAIN'  
       ]32_"ĥUVCTV 
       ]33_"TGCNGTT<"ő"""""""         AN ERROR HAS OCCURRED WHICH IS NOT WS FULL 
       ]34_")GTTQT"V[RG").*Ŏ3ĤŢNGT+.)"QP"NKPG").Ŏ3ĦŢNGT 
       [13] 'MESSAGE IS:'  
       ]36_"ŢGTO 
       ]37_"ħ 

Make sure that you have some escape route from the error trap routine, otherwise any error within that 

section of the function will cause an uninterruptible loop. (The Interrupt key or menu item also causes 
an error -  type 13)  

Error Signalling  

If some error report is to be made to the user of the system, it is useful to be able to modify the usual 

APL error messages, which may not be very meaningful to the end user. This can be carried out by the 

function ŢGTU0 ŢGTU can be used to force a standard APL error report, or, if used with a character left 
argument, it will display those characters and assign the error code in its right argument to ŢNGT0 

Here is an example where ŢGTU is used to make sure that the user hasn't hit the interrupt key 
accidentally: 

 
             ħHQQ=FCVC 
       ]3_"""ŢGTZ"GTT"ő""""""""""""""""""UGV"GTTQT"VTCR 
       [2]   L:'ENTER YOUR EXPRESSION'  
       ]5_"""FCVCģŒ 
       [4]   'THE RESULT IS:'  
       ]7_"""ŋ"FCVC 
       ]8_"""ĥN 
       ]9_"""GTT<"ĥ*35İ3ĤŢNGT+1PQVKPVő"""PQV"KPVGTTWRV 
       [8]   'DID YOU MEAN TO HIT INTERRUPT? (Y/N)'  
       ];_"""ĥ*)[)İ3ĤŒ+1N"ļ"ŢGTU"35"ő"UKIPCN"KH"EQPHKTOGF 
       ]32_""PQVKPV<"ŢGTU"3ĤŢNGT"ő"""""""UKIPCN"QVJGT"GTTQTU 
             ħ 

If the right argument is a number in the range 1 to 51, ŢGTU will display the standard APLX error 

message. As you will see later in the chapter, some error numbers are undefined, and in these cases 

ŢGTU will display UNKNOWN ERROR TYPE SIGNALLED. If the right argument is an empty 

vector, no error is signalled. Used with a character left argument, the error message may be altered. An 

empty vector left argument ('') will suppress the error message. 

 
             ħTģCX"D 
       ]3_""")PWOGTKE"CTIWOGPV"RNGCUG)"ŢGTU"*6?ŢFT"D+1: 
       ]4_"""Tģ*-1D+ĔŝD 
             ħ 
 
  



APLX Language Manual  198 

  

             AV 1 2 3  
       2 
             AV 'ABC'  
       NUMERIC ARGUMENT PLEASE 
             AV 
             ^  
             ŢLER 
       8 0  
             ŢSI  
       (empty response)              (the function has b een halted)  



APLX Language Manual  199 

  

Error Codes *ŢGV+ 

 
 

Error types reported by ŢGV are listed below. Note that some codes are unassigned. 

 
      0 0    NO ERROR  
      0 1    UNKNOWN ERROR  
      0 2    DEFN ERROR  
      1 1    INTERRUPT  
      1 2    SYSTEM ERROR  
      1 3    WS FULL 
      1 4    SYSTEM LIMIT  SYMBOL TABLE  
      1 8    SYSTEM LIMIT  ARRAY RANK  
      1 9    SYSTEM LIMIT  ARRAY SIZE  
      1 10   SYSTEM LIMIT  ARRAY DEPTH  
      1 11   SYSTEM LIMIT  PROMPT LENGTH  
      1 12   SYSTEM LIMIT  UNASSIGNED  
      1 13   SYST EM LIMIT  TOKEN LIST LIMIT  
      2 1    SYNTAX ERROR  OPERAND OR RIGHT ARGUMENT OMITTED  
      2 2    SYNTAX ERROR  ILL FORMED LINE  
      2 3    SYNTAX ERROR  NAME CLASS  
      2 4    SYNTAX ERROR  INVALID IN CONTEXT/NONCE ERROR  
      2 5    SYNTAX ERROR  CO MPATIBILITY SETTING PREVENTS THIS  
      2 10   SYNTAX ERROR  STRUCTURED - CONTROL ERROR 
      3 1    VALUE ERROR   NAME WITH NO VALUE  
      3 2    VALUE ERROR   FUNCTION WITH NO RESULT  
      5 1    VALENCE ERROR  
      5 2    RANK ERROR  
      5 3    LENGTH ER ROR 
      5 4    DOMAIN ERROR  
      5 5    INDEX ERROR  
      5 6    AXIS ERROR  
      6 1    FILE ERROR   UNAUTHORISED FILE ACCESS  
      6 2    FILE ERROR   FILE NOT IN SYSTEM  
      6 3    FILE ERROR   COMPONENT NOT IN FILE  
      6 4    FILE ERROR   FILE AL LOCAION EXCEEDED 
      6 5    FILE ERROR   FILE OR COMPONENT HELD  
      6 6    FILE ERROR   FILE MAINTENANCE IN PROGRESS  
      6 7    FILE ERROR   USER ALLOCATION EXCEEDED  
      6 8    FILE ERROR   FILE IN EXISTENCE  
      6 9    FILE ERROR   FILE I/O ERROR  
      6 10   FILE ERROR   DISK FULL  
      6 11   FILE ERROR   USER NOT IN SYSTEM  
      6 12   FILE ERROR   DATA DAMAGED  
      6 13   FILE ERROR   FILE LOCKED  
      6 14   FILE ERROR   LOGICAL UNIT NOT FOUND  



APLX Language Manual  200 

  

Error Codes (ŢNGT+ 

 
 

Errors reported by ŢNGT are allocated integer Error Codes. Some error codes are unassigned, but these 
codes may still be used by the ŢGTU function. 

 
      0     NO ERROR, OR ERROR RESET  
      Ì3""""QWV"QH"TCPIG"CTIWOGPV"HQT"ŢGU 
 
      1     WS FUL L                        17    FILE I/O ERROR  
      2     SYNTAX ERROR                   18    FILE NOT IN SYSTEM  
      3     INDEX ERROR                    19    UNAUTHORISED FILE ACCESS  
      4     RANK ERROR                     20    COMPONENT NOT IN FI LE 
      5     LENGTH ERROR                   21    FILE ALLOCATION EXCEEDED  
      6     VALUE ERROR                    23    FILE MAINTENANCE IN PROGRESS  
      7     VALENCE ERROR                  24    FILE OR COMPONENT HELD  
      8     AXIS ERROR                     25    INCORRECT COMMAND 
      9     SYSTEM ERROR                   26    DATA DAMAGED  
      10    SYSTEM LIMIT                   27    USER NOT IN SYSTEM  
      11    DOMAIN ERROR                   28    USER ALLOCATION EXCEEDED  
      12    SY MBOL TABLE FULL              29    FILE IN EXISTENCE  
      13    INTERRUPT                      40    DISC FULL  
      14    DEFN ERROR                     41    FILE LOCKED  
      15    UNKNOWN ERROR                  42    LOGICAL UNIT NOT FOUND  
      16    NONCE ERROR                    43    STRUCTURED CONTROL ERROR  



APLX Language Manual  201 

  

Error Messages 

 
 

The various error messages that APLX will generate are shown below: 

 
Message                          Problem and corrective action  
ţţţţţţţ""""""""""""""""""""""""""ţţţţţţţţţţţţţţţţţţţţţţţţţţţţţ 
 
AXIS ERROR                       The axis used is incorrect or the operator is  
                                 not defined with axis or the axis specification  
                                 contains invalid characters.  
 
BUFFER FULL                      Input line too long.  
                                 Action: interrupt the display and shorten the  
                                 line.  
 
COMPONENT NOT IN FILE            The file does not contain the specified  
                                 component, or the function was not found in  
                                 the shared library.  
 
COPY BUFFER FULL                 Name list of )COPY command is too long.  
                                 Action: shorten name list.  
 
DATA DAMAGED                     Error detected in the internal format of a  
                                 variable.  
 
FGHP"GTTQT"""""""""""""""""""""""Yjgp"wukpi"ħ"vq"etgcvg"hwpevkqp< 
                                 -  function name duplicates name of an object  
                                   already in the workspace, invalid header  
                                   Action:  change  name  of either, or erase  
                                   object, correct the header.  
                                 -  the name  you have used is invalid or locked.  
 
                                 When using ħ"vq"gfkv"c"hwpevkqp< 
                                 -  you've included the argument names with  
                                   the function name when attempting to edit  
                                   an existing function.  
                                 -  the function is locked.  
                                 -  the function is pendant. (see the section on  
                                   Error Handling)  
 
                                 When editing body of function:  
                                 -  improper attempt at function line editing,  
                                   for example a [, a number, but no closing ].  
 
DISK FULL                        File dataspace is full  
 
DOMAIN ERROR                     You've used an APL function, but the  
                                 arguments you have supplied are outside  the  
                                 domain of that function. For example:  
                                 -  You've tried to divide by zero.  
                                 -  You've tried to use one of the arithmetic  
                                   functions (+ -  × ÷) with characters  
                                 -  You've used  fractional numbers with  
                                   functions which require whole numbers   (e.g.  
                                   oqpcfke"Ŝ"qt"A+ 
 
FILE ALLOCATION EXCEEDED         The file has reached its maximum allowed size  



APLX Language Manual  202 

  

 
FILE IN EXISTENCE                Attempt to rename a file to an I.D. which  
                                 already exists  
 
FILE I/O ERROR                   The host operating system has signalled to APL  
                                 an error in some disc - related operation  
 
FILE LOCKED                      An incorrect file password has been used  
 
FILE NOT IN SYSTEM               The file that is being accessed does not exist  
 
FILE OR COMPONENT HELD           The  operation cannot be performed due to an  
                                 outstanding file or component hold by another  
                                 user  
 
INCORRECT COMMAND                You've typed a command starting with ), but  
                                 the remainder of the command is not correct or  
                                 not recognised.  
 
INDEX ERROR                      When carrying out an indexing operation, you  
                                 have used an invalid index. For example:  
                                 -  You have  asked  for element [5] of  a 4  
                                   element vector  
 
INTERRUPT                        User interrupt.  
 
I/O ERROR                        APL  encountered an error during input/output.  
                                 Rtqdcdn{"jctfyctg"hcknwtg"qt"knngicn"ŢOQWPV 
                                 table.  
 
LENGTH ERROR                     Arguments are of unequal lengths, or the axes  
                                 where the  lengths  of the  arguments must  
                                 match are unequal. For example:  
                                   2 3 + 3 4 5  
 
LOGICAL UNIT NOT FOU ND           The logical unit requested does not exist,  
                                 or the shared library was not found, or the  
                                 external class was not found.  
 
NONCE ERROR                      The  expression you have t yped is syntactically  
                                 correct, but the interpreter does not support  
                                 it at the moment.  
 
NO SPACE                         Not enough  disc space to perform )COPY or  
                                 )SAVE command  
 
NOT COPIED....                   Attempt to )PCOPY an object which exists in the  
                                 active workspace.  
 
NOT ERASED....                   The objects shown were not found by the )ERASE  
                                 operation.  
 
NOT FOUND.....                   Workspace does  not contain the object.  
                                 Action:  check spelling of workspace or  object  
                                 name.  
 
NOT GROUPED,NAME IN USE          Variab le or function already has the  name;  
                                 Action:change name of group or erase conflicting  
                                 object  
 
NOT SAVED: THIS WS IS WSID       Normally occurs on attempt to save a  
                                 workspace using a name which is not that of  



APLX Language Manual  203 

  

                                 the active workspace and which duplicates the  
                                 name of a workspace in the library. You have  
                                 used the )SAVE  command in the form  
                                        )SAVE NAME 
                                 to rename and SAVE the workspace.  
                                 Action:  rename  the active workspace using  
                                 )WSID, then save.  
 
NOT SAVED, WS LOCKED             Occurs on attempt to save an active  workspace  
                                 with  the  same  name   as,   but a   different  
                                 password  from,   a  workspace already  in  the  
                                 library.   A locked workspace cannot be loaded,  
                                 dropped,   copied    or    saved - over   without  
                                 knowing  the  correct  password.   To  change a  
                                 password  on  a  saved  workspace,   )LOAD  the  
                                 workspace,   )DROP the workspace,  then  resave  
                                 with a new password.  
                                 Action:  change  the  password  of  the  active  
                                 workspace using )WSID.  
 
NOT WITH OPEN DEFINITION         The  command  cannot  be  processed  while  you  
                                 are editing a function.  
                                 Acvkqp<""enqug""vjg"fghkpkvkqp"ykvj"ħ""cpf""tg-  
                                 issue the command.  
 
RANK ERROR                       Function not defined for data of this structure  
                                 or arguments are of incompatible rank.  
                                 Action:  provide argument of correct  structure  
                                 (single number/character, vector, matrix, etc)  
 
SI DAMAGE                        A pendant  or  suspended   function   has  been  
                                 replaced or removed by )COPY or )ERASE.   Label  
                                 lines  of  a  suspended   function  have   been  
                                 edited.   A  function not at the top of the  SI  
                                 list  has been edited,    erased or copied.   A  
                                 function  on  the  SI list has had  its  header  
                                 edited.  
                                 Action: clear the state indicator by )SICLEAR.  
 
STRUCTURED CONTROL ERROR         A Structured Control keyword has been encountered  
                                 but the context is wrong.   For example, an :End  
                                 may have been encountered but there is no current  
                                 block active, or you have branched into an  
                                 indented block.  
                                 Action: Check the block structure keywords  
                                 match up.  
 
SYMBOL TABLE FULL                Too  many  names in use for the current  symbol  
                                 table size.  
                                 Action: )SAVE the current workspace, )CLEAR the  
                                 active  workspace,   increase the siz e  of  the  
                                 symbol  table using )SYMBOLS,   )COPY the saved  
                                 workspace back into the active workspace.  
 
SYNTAX ERROR                     Ill - formed expression,   or incorrect number of  
                                 arguments for a function. For example:  
                                 -  You  have  used  a   one  argument   function  
                                   without a right argument.  
                                 -  You  have  unb alanced parentheses  
 
SYSTEM ERROR                     An  internal  hardware   or   software  problem  
                                 such  as  a memory fault.   After this  error a  



APLX Language Manual  204 

  

                                 clear workspace is loaded automatically.  
 
SYSTEM LIMIT                     One of the system limits has been exceeded,  for  
                                 example the rank of an array.  
 
UNAUTHORISED FILE ACCESS         The  file's  access matrix does not  allow  the  
                                 operation from this user number.  
                                 Action: modify access matrix  
 
USER ALLOCATION EXCEEDED         User  has too many files or the aggregate  size  
                                 of  the  file  exceeds the  user's  quot a.  
 
VALENCE ERROR                    A function  has  been used with too many or  too  
                                 few  arguments -  for example a left argument for  
                                 a monadic  function or a right argument only for  
                                 a dyadic function.  
 
VALUE ERROR                      The  name you've asked for does not exist,   or  
                                 you  have referred to the result of a  function  
                                 which does not  return a result.  
 
WS FULL                          Insufficient  workspace.   The active workspace  
                                 cannot  contain  all   the  objects  requested.  
                                 During a )COPY command no objects are copi ed.  
                                 Action:  erase  some variables or  functions to  
                                 make  more  space.   Clear the state  indicator  
                                 using )SICLEAR.  
 
WS LOCKED                        You  ha ve  used  an  incorrect  password  for a  
                                 workspace that was saved with a password.  
 
WS NOT FOUND                     The   workspace  requested  is   not   in   the  
                                 specified library or logi cal unit.  
                                 Action:  check  the location of  the  workspace  
                                 and the spelling of the workspace name.  



APLX Language Manual  205 

 

Section 4: Component File Systems 

 
 

Component files are APL files in which you can store arbitrary APL arrays or overlays. APLX 

supports two different component file systems. The first of these is based on the file-access primitives 
Ň"ň"Ō"ŏ (as implemented in APL.68000), and the second is based on system functions such as ŢHVKG. 





APLX Language Manual  207 

 

Ň"based File System 

 
 

The APLX Ň"based File System uses four primitive functions to transfer APL data between the active 
workspace and a file space located on a disk storage device: 

 
             Ň         File Read         ('Quad - Read')  
             ň         File Write        ('Quad - Write')  
             Ō         File Hold         ('Quad - Hold')  
             ŏ         File Drop         ('Quad - Drop')  

APL files are identified by a file number, and components are accessed by component number. A file 

may be kept secure from other users by passwords, or by one of two methods of access control: 
control of access by user number, and a file or component hold facility. 

The file system has been designed to facilitate casual use of the system without reducing the security 

features which may be required by more complex applications. Files are created automatically when 

the first write operation is performed. 

Individual components may be any valid APL data, including overlays. The components keep their 

type and shape when stored and retrieved. Components may be added or inserted at any point in a file 
and any component may be deleted, even if it is located in the middle of a file. 

APL files are located in a 'data space'. There may be several 'data spaces' throughout the system. Each 

'data space' is independent of all other 'data spaces'. A utility program is supplied with APLX to create 

and maintain these 'data spaces', and this will be detailed in the system dependent notes. All file 

operations allow subscripts to select, via a logical unit number set in the ŢOQWPV function, which 'data 
space' is to be used in a given operation. 

Basic File Operations  

A file consists of a set of sequentially numbered components, each of which may be any APL variable. 

The components are referred to by their position within the file. Deletion of components or insertion 

of components within the file automatically renumbers the file in a manner similar to the renumbering 

of APL function lines during function editing. Files are created by the first valid write operation. 

Extensions to the built-in file functions allow information about the files, and their components to be 

read. 

For each 'data space', the file system keeps tabs on the number of files each user owns and the size of 

those files. Each user has quotas which limit the number (if any) of files he may own, and the 

aggregate size of those files. In addition to the limits on a user, there are quota restrictions on the size 

of each individual file. The user is free to alter the default file size (which varies from system to 
system) upwards or downwards -  subject, of course, to his overall quota. 



APLX Language Manual  208 

  

Advanced File Operations  

Each user of APLX can be allocated a user number (shown by 3ĤŢCK), which allows each user in a 

multi-user environment to assume a unique identity. Individual APLX files are tagged with a User 

Number, and have an associated File Access Matrix which indicates which users can access the file 

and what operations they may perform. Users will be allocated their user number by the logon 

procedure adopted by their system. Each user can thus 'own' a number of files and the user can grant 
or deny access to these files. 

The Access Matrix is two columns wide. The first column is a list of user numbers -  with 0 being 

taken to mean ALL users. The second column is a list of integers which indicate the access privileges 

for the indicated user. When a file is created, the default access matrix allows only the owner to access 

it, and grants to the owner all accesses except File-Delete. An Access matrix may have a maximum of 
29 rows. 

The access privileges can be given in two ways. 

A positive privilege states what the user can do, and a negative privilege states what the user cannot 

do. 

The privilege code is effectively a number generated by adding various powers of 2 (1,2,4,8,16,....), 

each power of 2 corresponding to a particular privilege. Positive privilege codes are merely the sum of 

the individual privileges granted, whilst negative privilege codes are generated by adding ¯1 and the 
result of negating the sum of all the privileges denied. 

 
             Power of 2        Operation  
              0    (1)         Read components  
              1    ( 2)         1 Ň 4Ň"5Ň 
              2    (4)         Insert Components  
              3    (8)         Append Components  
              4    (16)        Replace Components  
              5    (32)  
              6    (64)        Delete a File  
              7    (128)       Delete a Component  
              8    (256)  
              9    (512)       Set File Allocation  
              10   (1024)      Rename  
              11   (2048)      Hold/Release File  
              12   (4096)      Hold/Release Components  
              13   (8192)  
              14   (16384)     6 Ň 9Ň 
              37"""*5498:+"""""3Ň 
              38"""*87758+"""""4Ň 
              39"""*353294+""""5Ň 
              18   (262144)  
              19   (524288)    Read Access Matrix  
              20   (1048576)   Write Access Matrix  



APLX Language Manual  209 

  

For example: 

 
Privi lege   Meaning  
 
     0      No Access  
     1      Read Only Access  
    17      Read and Replace Access  
    ¯1      Full Access  
   ¯65      All Operations except Delete allowed  

In addition to the access privileges afforded to users by the Access matrix, the Hold mechanism 

temporarily suspends file access by other users, whilst, for example, an updating operation is being 

carried out. Hold may be applied and released to whole files or components, and holds may be applied 
in two strengths -  write access restricted and both read and write restricted. 

For more information, see the descriptions of the file-access primitives: 

Ň"Tgcf."Igv"kphq."Tgpcog 
ň"Ytkvg 
Ō"Jqnf1Tgngcug."Ejcpig"Swqvc 
ŏ"Fgngvg 





APLX Language Manual  211 

 

Ň File read 

 
 

One-argument form  

Ň reads data from a file. The right argument specifies the file and component number of the data 

required. 

The one-argument Ň statement takes this form ({}  means optional): 

 
             TģŇ"}]NKDTCT[_ "HKNG."EQORQPGPV"}.WUGT."RCUUYQTF  

LIBRARY identifies the library volume from which data is to be read. If you omit the library number, 

library 0 is assumed. If included, the library number is put in square brackets. (see also the section on 
ŢOQWPV). 

FILE identifies the file the data is to be read from (a positive integer) 

COMPONENT identifies the data item you want to read (an integer). Component number 0 means the 
last component, and if the component number is omitted, it is assumed to be 0. 

USER and PASSWORD are used for file security in shared file applications; the defaults are 3ĤŢCK 

and 0 respectively if omitted (both integers). User number 0 also means the owner. 

 
             Ň 3 300                 (Component 300 is read from file 3 on  
       2.6 7.1 3.3                    on library 0. The data is displayed)  
 
             CģŇ"4"62                (The data in component 40 of file 2 is  
                                      read and is assigned to A)  
 
             CģŇ]5_"32"3;"3222";;""""*Fcvc""ku""tgcf"htqo"eqorqpgpv"3;""qh""hkng 
                                      10 on library 3,  belonging to user 1000  
                                      and with password 99)  

A variant of the one-argument form is used for reading the file access matrix. Here the negative of the 

file number is used and the value returned is the present access matrix. (See the discussion of file 
access matrices above) 

 
             AģŇÌ5"""""""""""""""""""*Vjg"hkng"ceeguu"ocvtkz"qh"hkng"5"qp 
                                      library 0 is assigned to A)  

Two-argument form  

The two argument form of Ň provides information about the files and components. The general syntax 

is: 

 
             T"ģ"C"Ň"}]NKDTCT[_ "HKNG"}.EQOR.WUGT.RCUUYQTF  



APLX Language Manual  212 

  

The action of Ň in this form is governed by the value of A, as the next table shows (library, file, 

component ,user  and password are as defined for the one argument form). The file number is 

required when information is sought about a given file and the component number is only used when 

information about a given component is sought. If the file number is omitted it defaults to 0, as does 
the component number. 

 
      A   File no.  Comp. no.           Resu lt of Ň 
 
      1    FILE        0                The number of components in the file  
      2    FILE        0                A nine - element file description vector  
      2     0          0                An eight - element user quota vector  
      3    FILE     CO MP                A six - element component description vector  
      5     0          0                A vector of the file numbers belonging to  
                                        the user, in ascending order  
      6    FILE        0                A th ree - element vector of file hold  
                                        information  
      7    FILE     COMP                A three - element vector of component hold  
                                        information  

The file description vector comprises: 

 
     1 -  File number  
     2 -  Maximum allowed size in bytes  
     3 -  Actual size  
     4 -  Number of components  
     5 -  Date file was created, MMDDYY  
     6 -  Time file was created, HHMMSS  
     7 -  Date file was last updated, MMDDYY  
     8 -  Time file was  last updated, HHMMSS  
     9 -  Bytes attributable to file overhead  

The user quota vector comprises: 

 
     1 -  User number  
     2 -  Aggregate file allocation quota  
     3 -  Current aggregate file size  
     4 -  Number of files quota  
     5 -  Number of files in existence  
     6 -  Allocation assigned to a new file  
     7 -  Free space remaining in dataspace  
     8 -  Largest contiguous space left in dataspace  

The component description vector comprises: 

 
     1 -  File number  
     2 -  Component number  
     3 -  User  number  
     4 -  Date component was written, MMDDYY  
     5 -  Time component was written, HHMMSS  
     6 -  Size of component in bytes  

The file hold information request returns the following: 

 
     1 -  Number of components held  
     2 -  User holding the file (or 0)  
     3 -  Hold restriction (0, 1 or 2)  



APLX Language Manual  213 

  

And finally, the component hold vector: 

 
     1 -  Component number  
     2 -  User holding the component (or 0)  
     3 -  Hold restriction (0, 1 or 2)  

For example: 

 
             7Ň]3_"2"""""""""""""""""*C"xgevqt"qh all files on volume 1)  
       1 117 10923478  
 
             4Ň]3_"339"2"""""""""""""*Vjg"hkng"fguetkrvkqp"xgevqt"qh"hkng"339"qp 
                                      library 1)  
       117 500000 388864 60 10383 2429 22384 223357 56  

File Rename  

The file may be renamed with a variant of the two argument Ň function. The general form of the 

operation is ({}  means optional ):  

 
            Tģ*PGYHKNG.QXGT.WUGT"}.PGYRCUU +Ň"}]NKDTCT[_ QNFHKNG.2.WUGT.}QNFRCUU  

NEWFILE means the new file number 

OLDFILE means the original file number 

NEWPASS means the new password (if a password is to be changed it must be specified in both 

arguments) 

OLDPASS means the original password 

R, the result, is 1 for a successful rename; 0 if the operation failed 

OVER means whether or not the rename may overwrite an existing file (except when changing the 
password). 

 
      OVER = 0 means that overwriting is not allowed  
      OVER = 64 means that overwriting is allowed  

When overwriting, the file being overwritten must have delete access set, and the password (if any) 
must be correct. Otherwise a file locked error is shown. 

 



APLX Language Manual  214 

  

ň File write 

 
 

ň writes data to a file. The left argument is the data. The right argument identifies where it's to go. If 

the file specified as the destination already exists, the data is put in it. If it doesn't exist, ň causes it to 

be created first. A component may only be written within the range of existing components (either by 
replacement or insertion), or be appended to the end of the file. 

The full form of ň is as follows ({}  means optional) 

 
             T"ģ"C"ň"}]NKDTCT[_ "HKNG.EQORQPGPV"}.WUGT.RCUUYQTF  

A is any APL variable. 

R (the result) is an empty vector with display potential off. 

LIBRARY number identifies the library volume number to which the file is to be written. If you omit 

the library number, library 0 is assumed. If included, the library number is put in square brackets. (See 
also ŢOQWPV for a discussion on alteration of library numbers.) 

FILE number identifies the file the data is to be written to (an integer). 

COMPONENT number is the identifying number which shows the way in which the variable is to be 
put into the file: 

C=0 Append a new component to the end of the file 

C=integer  Replace an existing component, unless the number is 1 past the end of the file when it is 

appended 

C=fraction  Insert the component between the two integers on either side of C. Again append if C is 
less than 1 after the end of file.  If C is omitted, it defaults to 0. 

USER number and PASSWORD are used for file security in shared file applications; the defaults are 

3ĤŢCK and 0 respectively if omitted. 

 
             3"5"9"ň"8"4"""""""""""""*Vjg"xgevqt"3"5"9"dgeqogu"eqorqpgpv"4"qh 
                                      file 6 on library 0. If component 2  
                                      already exists it's overwritten.)  
 
             XCTň]4_728"5"3297"""""""*XCT"ku"ytkvvgp"vq"eqorqpgpv"5"qh"hkng 
                                      506 belonging to user 1075 on library 2)  
 
             *2"ŢQX"ŢPN"5+ň34"7""""""*Cnn"vjg"hwpevkons in the workspace are  
                                      filed as an overlay, into file 12  
                                      component 5 -  ugg"cnuq"ŢPN."ŢQX+ 



APLX Language Manual  215 

  

A variant of ň is used for updating the file access matrix. Here the negative of the file number is used 
and the left argument is the new access matrix. 

Note: 

Writing an access matrix to a non-existent file is a way to create an empty file. 

 
             C"ň"}]NKDTCT[_ "- FILE {,COMPONENT,USER,PASSWORD} 
 
             *3"4ŝ3222"Ì3+ň]5_Ì;"""""*Hile 9 on library 3 is set to FULL access  
                                      for the owner)  

 

Ō File hold 

 
 

One-argument form  

Ō in one-argument form alters the file allocation quota (how much the file may 'hold'). When a file is 

first created it is restricted to a given size. (This size will vary from system to system). The file 

allocation quota may be examined via 4Ň0 A file may be created by reading the file allocation quota. 
A file so created will have no components. 

The general form is ({}  means optional): 

 
             T"ģ"Ō"}]NKDTCT[_ "HKNG.CNNQECVKQP"}.WUGT.RCUUYQTF  

A file number of 0 means change the default allocation given to all new files. Ō returns the old value of 
the allocation quota. 

 
             Ō[1] 120 200000         (The file allocati on quota of file 120 on  
       50000                          library 1 is to be raised to 200000 bytes)  
 
             Ō[2] 0 100000           (The default file allocation on library 2 is  
       50000                          to be increased to 100000 byte s)  

 

Two-argument form  

This more common form of Ō allows file access by other users in a shared file system temporarily to 

be suspended. While a hold is in effect at the component or file level, the user issuing the successful 

hold is granted exclusive access to the held component or file to perform his file update(s). The 
general form of the command is: 

 
             TģC"Ō"}]NKDTCT[_ "HKNG.EQORQPGPV"}.WUGT"PQ.RCUUYQTF  

For a component number of 0 the entire file is held. The left argument A determines the strength of the 
hold: 



APLX Language Manual  216 

  

 
       0       means release the component or file, removing a previous hold  
       1       means restrict write access by others  
       2       means restrict read and write access by others  
 
             3"Ō]3_"342"5""""""""""""*Tgstrict write access to component 3  
        1                             of file 120 on library 1)  
             4"Ō";:"2""""""""""""""""*Tguvtkev"tgcf1ytkvg"ceeguu"vq"yjqng 
        1                             of file 98 on library 0 (default))  
             2"Ō]3_"342"5""""""""""""*Tgngcug"eqorqpgpv"5"qh"hkng"342 
        1                             on library 1)  
             2"Ō";:"2"3222"""""""""""*Tgngcug"hkng";:"qp"nkdtct{"2."hkng 
        1                             belongs to user 1000)  

In two-argument form, Ō returns a 1 if the operation was successful, 0 otherwise. 

Effect of Access Matrix on Hold Operation  

Some file operations are not affected by the Ō function, and some others are blocked even to the 

holder. The following table illustrates: 

 
        Operation                               Effect of Hold  
                                          File Hold     Component Hold  
        Read components                      2                2  
        3Ň"4Ň""""""""""""""""""""""""""""""""4""""""""""""""" 0 
        5Ň"""""""""""""""""""""""""""""""""""4""""""""""""""""4 
        Insert Components                   1+2               N  
        Append Components                   1+2               0  
        Replace Components                  1+2              1+2 
        Delete a File                       1+2               N  
        Delete a Component                  1+2               N  
        Set File Allocation                 1+2               N  
        Rename                              1+2               N 
        Hold/Release File                   1+2               N  
        Hold/Release Components             1+2              1+2  
        6Ň 9Ň""""""""""""""""""""""""""""""""2""""""""""""""""2 
        Read Access Matrix                   2                0  
        Write Access Matrix                 1+2               N  

where: 

 
       0   means the operation is not affected by a hold  
       2   means  that  when  the  hold strength is 2  (read  and  write  held),  
           only  the  holder  may perform the operation.   For  components,  the  
           block is only on the held components  
      1+2  means  that  when the hold strength is 1 or  2,   only the holder  may  
           carry out the operation.  Again, for components, the block is only on  
           the held components  
       N   means that when the hold strength is 1 or 2, no one may carry out the  
           operation  

 



APLX Language Manual  217 

  

ŏ File drop 

 
 

One-argument form  

Deletes a component within a file. The right argument identifies the file or component to be dropped. 

A file is identified by its file number and a component is identified by the number of the file it's in, 
and its own number within that file. 

The full form of ŏ is ({}  means optional): 

 
             T"ģ"ŏ"}]NKDTCT[_ "HKNG.EQORQPGPV"}.WUGT.RCUUYQTF  

R (the result) is 1 if the operation was successful, and 0 if not. 

LIBRARY number identifies the library volume which holds the file to be accessed. If you omit the 

library number, library 0 is assumed. If included, the library number is put in square brackets. (see also 
the entry on ŢOQWPV for discussion of library numbers) 

FILE number is the number of the file to be accessed. 

COMPONENT number is the number identifying the component to be deleted. If 0 the last component 

is deleted. If the component is not specified, the number will be assumed to be 0. 

USER number is the number of the owner of the file. If omitted, defaults to 3ĤŢAI , i.e. your own user 

number.  PASSWORD is the optional number designated as a security password 0 is assumed if the 
password is omitted. 

APLX will return a code 1 to indicate that it has successfully carried out the operation, otherwise a 0 is 
returned. 

 
             ŏ 2 100                 (Delete component 100 in file 2)  
       1 
             ŏ[1]4 222               (Delete component 222 of file 4 which is  
       1                              on library volume 1)  

Two-argument form  

Deletes an entire file from the system. The form is ({}  means optional): 

 
             TģWUGT"ŏ"}]NKDTCT[_ "HKNG.2."}WUGT.RCUUYQTF  

where R, USER, LIBRARY, FILE, PASSWORD are as defined above. 

Note: By default, a user is denied the privilege of deleting an entire file, even his own. In order to 

delete a file, the owner must first grant himself the deletion privilege by adjusting the Access matrix 
(see section on Ň+0 





APLX Language Manual  219 

 

ŢHzzz Component File System 

 
 

As an alternative to the powerful multi-user component file system accessed using the file primitives Ň"

ň"Ō"ŏ, APLX also implements a second component file system similar to that used in many other 

APL interpreters, with important extensions. This is based on the system functions ŢHETGCVG ŢHVKG 
ŢHTGCF and so on. 

ŢHzzz files are identified by a file name, and created using ŢHETGCVG. For each APL component file, a 

separate operating-system file will be created. When you want to use an existing file, you first 'tie' 

(open) it using ŢHVKG or ŢHUVKG, and then you refer to the file by the tie number which you have 

specified or which has been automatically allocated by APLX. (This is in contrast to the ň"Ň-based 

system, where a single 'dataspace' holds multiple APL component files, component files are always 

identified by number, and there is no need to 'tie' a file to use it.) Once the file has been tied, 

components are accessed by component number. When you have finished using a file, you must close 

it using ŢHWPVKG. (They are untied automatically when the APL task ends, but they are not untied 

automatically when you )CLEAR the workspace or )LOAD another workspace). 

Components within a file are numbered sequentially, initially from 1 to N, where N is the number of 

components in the file. You read components from an existing file using ŢHTGCF. You can write a 

component to the file using the ŢHCRRGPF and ŢHTGRNCEG facilities implemented by other APL 

interpreters; these allow you to append to the end of the file, or to replace an existing component 

respectively. You can also delete components using ŢHFTQR, but only from the start or the end of the 

file. Components are not re-numbered, so if you drop components from the start of the file, the first 
component will no longer be number 1.  

APLX retains upwards compatibility with this simple model, but in addition provides the more general 

functions ŢHYTKVG (which allows you to insert components anywhere within the range of existing 

components, or immediately before or after them), and ŢHFGNGVG (which allows you to delete a 

component anywhere in the file). When you use these extensions, components are automatically re-

numbered so that they always comprise sequential integers from the first component M to the last 
component 1+M-N, where N is the number of components in the file. 

Individual components may be any valid APL data, including nested arrays and overlays created using 

ŢQX (which can contain multiple functions and variables). The components keep their type and shape 

when stored and retrieved. When you replace a component, the new component does not have to be 

the same size as the original; the file system automatically expands the file if necessary to 

accommodate a larger component, and if possible releases space when you replace an existing 
component with a smaller one. 

When using the file system in a multi-user or multi-tasking environment, you can optionally tie a file 

for exclusive use (ŢHVKG), or for shared access (ŢHUVKG). A file may be kept secure from other users 

by a pass number, and you can set an access matrix which determines what operations other users can 

perform. To facilitate concurrent use of shared files whilst maintaining data integrity, the file hold 
facility ŢHJQNF allows you to hold one or more files temporarily for exclusive use. 



APLX Language Manual  220 

  

Special considerations for Client-Server implementations of APLX 

See ŢHETGCVG for details on how component files can be located on either the Client or Server 

machine. 

Mixing 32-bit and 64-bit Component Files 

If you are running both 32-bit and 64-bit versions of APLX, then it is possible to share component 

files between the two architectures, but there are some special points you should be aware of. The 
rules are as follows: 

¶ If the file has been created from a 32-bit version of APLX, then it will always remain as a 32-

bit component file. It can be accessed from 64-bit APLX64 systems, but all components will 

be held in 32-bit form. If you write a component from APLX64, then the data is converted to 

32-bit form before it is written. This means no component can be bigger than 2GB, nor have 

more than 2,147,483,647 elements. It also means that any 64-bit integer data will be converted 

to floating-point form if it contains integers of magnitude bigger than 2*31. If it contains 

integers of magnitude bigger than 2*53, the data conversion will involve loss of precision. The 

maximum size of the file is currently 2GB. 

¶ If the file has been created from a 64-bit APLX64 interpreter, it will be a 64-bit component 

file. It cannot be accessed from 32-bit APLX systems. Data can be of any type or size, subject 
only to an overall size limit for a single component file of 1024GB. 

Component File Functions 

For more information, see the descriptions of the ŢHzzz system functions: 

ŢHCRRGPF Append component to file  

ŢHETGCVG Create a new component file  

ŢHEUK\G Read component size information  

ŢHFGNGVG Delete component from file  

ŢHFTQR Drop components from start or end of file  

ŢHFWR Duplicate component file,  reclaiming wasted space  

ŢHGTCUG Erase component file  

ŢHGTTQT Return operating - system error  

ŢHJQNF Hold/Release component files for exclusive access  

ŢHNKD Return names of component files in directory  

ŢHPCOGU Return names of currently - tied files  

ŢHPWOS Return tie numbers in use  

ŢHTFCE Read component - file access matrix  

ŢHTFEK Read component information  

ŢHTFHK Read file information  

ŢHTGCF Read component  

ŢHTGPCOG Rename component file  

ŢHTGRNCEG Replace existing component  

ŢHTGUK\G Set maximum file s ize  

ŢHUK\G Read file - size and component - range information  

ŢHUVCE Set component - file access matrix  



APLX Language Manual  221 

  

ŢHUVKG Tie file for shared use  

ŢHVKG Tie file for exclusive use  

ŢHWPVKG Untie component file(s)  

ŢHYTKVG Append, replace or insert component  

 





APLX Language Manual  223 

 

Section 5: Native File Functions 

 
 





APLX Language Manual  225 

 

APLX Native File Support 

 
 

APLX provides a full set of system functions which let you access the native file system on your host 
machine. 

In many cases, the easiest way to read or write data in files is to use the ŢKORQTV and ŢEXPORT 

functions. These allow you to read or write the entire contents of a file in a single call, in a number of 

common formats, for example in formats which spreadsheets can access. However, for more detailed 

control of the contents of a file, or to access files which are too big to read into a variable in the 
workspace, you will need to use the native file functions described below. 

See also ŢUSN, which allows you to read and write data held in relational databases. 

Native file functions using tie numbers  

Most of the APLX native file functions refer to a host file through a file tie number, a non-zero integer 

value used to identify the file once it has been opened. You can specify the tie number yourself as an 

argument to the ŢPVKG or ŢPETGCVG functions. Alternatively, you can provide an argument of 0 and let 

APLX choose a unique tie number for you (in this case it is returned as the explicit result of the 

function). The name of the file to tie is supplied to the ŢPVKG or ŢPETGCVG call as a character vector 

and may be a file name or a full host path name. If the full path is omitted the current working 

directory is assumed. Case is significant in host file names under Linux or AIX, but not under 
Windows and MacOS. 

Files may be accessed totally randomly, that is you can read and write data as an arbitrary stream of 

bytes anywhere in the file. The ŢPTGCF and ŢPYTKVG functions also allow you to specify an optional 

conversion to apply to the file data. For example you can read data as raw bytes or translate text files 

into the internal representation used by APLX. Unicode text is also supported. You can read numeric 

data as 2 or 4-byte integers, or as booleans or 8-byte floats. In addition you can specify that data is 
byte-swapped for transfer between machines with different byte-ordering conventions. 

When you have finished using a file it must be untied using the ŢPWPVKG function. This will close the 

file and release any file locks that have been set by the ŢPNQEM function. Files are also untied 
automatically by a )CLEAR or an )OFF.  Tied files are not affected by a )LOAD operation. 

Errors may arise using the native file system for a number of reasons, for example an attempt to tie a 

non-existent file or to read beyond the end of a file. In the event of an error of this type, the system 

function will return a FILE I/O ERROR. In addition, if error trapping is not enabled, a short 
informative message is displayed: 

 
     'TEST.DATA' ŢNTIE 1  
  A file or directory in the path name does not exist.  
  FILE I/O ERROR  
     )VGUV0FCVC)"ŢPVKG"3 
     ^  



APLX Language Manual  226 

  

The text of the specific error message is also available using the ŢPGTTQT function. This returns the 
error message for the last native file system function to give rise to a FILE I/O ERROR. 

File size limits 

In 32-bit versions of APLX, the maximum integer is 2147483647. Because file sizes and positions are 

expressed as integers, this effectively puts a limit of 2GB on the size of native files which you can 
directly access in the 32-bit versions of APLX. 

In APLX64, the maximum integer is 9223372036854775807, making it possible to directly access 
files of up to 8,589,934,592 GB. 

Special considerations for Client-Server versions of APLX 

In Client-Server implementations of APLX, you can specify whether the native file access should take 
place on the Client or Server machine. See the description of ŢPETGCVG for more information. 



APLX Language Manual  227 

 

Native File System Functions 

 
 

For details on using the native-file functions, see the following entries in the section on System 
Functions and Variables: 

ŢPCRRGPF" Append data to file 

ŢPETGCVG Create file 

ŢPGTCUG Erase file 

ŢPGTTQT Get last file error 

ŢPNQEM Lock/Unlock file 

ŢPPCOGU List names of tied files 

ŢPPWOU List tie numbers 

ŢPTGCF Read data from file 

ŢPTGPCOG Rename file 

ŢPTGRNCEG Replace data in file 

ŢPTGUK\G Resize file 

ŢPUK\G Get size of file 

ŢPVKG Open file 

ŢPWPVKG Close file 

ŢPYTKVG Write data to file 

 





APLX Language Manual  229 

 

Section 6: System Commands 

 
 





APLX Language Manual  231 

 

)CLASSES (first (l ast)) 

 
 

Lists the names of the user-defined classes in the current workspace. If the command is followed by a 

character or group of characters, the list gives the names of all functions beginning with that character 

or group of characters onwards (the parameter first , used on its own). A second character or group 

of characters after the command (the parameter last ) is used to end the list of names. Names are 
shown in alphabetic order, fully sorted. 

 
             )CLASSES 
       Point   Polygon Rectangle  S phere    Triangle       
             )CLASSES S  
       Sphere  Triangle  
             )CLASSES Pol R  
       Polygon Rectangle  

See also ŢENCUUGU, which returns a list of user-defined classes and references to external classes. 

 

)CLEAR (wssize) 

 
 

Clears the current workspace. All objects in the workspace are erased, most system variables revert to 
their default settings, and the name of the workspace reverts to CLEAR WS. 

 
             )CLEAR 
       CLEAR WS 

)CLEAR also optionally changes the workspace size. You can specify a parameter which is the 

workspace size you want. It must be an integer, and can be specified in bytes, or followed by K or KB 

for kilobytes, M or MB for megabytes, or G or GB for gigabytes. The valid range is 50 KB to 2 GB 
(for 32-bit versions of APLX), or up to a theoretical maximum of 8580934592 GB for APLX64. 

Depending on the operating system and its configuration, and the amount of memory already in use by 

APLX tasks, you are likely to be limited in the maximum size of workspace which you can allocate. 

Thus you may not get the full size requested. In practice also, if the workspace you allocate is larger 

than the physical RAM in your system, then performance may become be very poor. 

For example: 

 
            )CLEAR 1000000  
      WS Size =  976KB 
      CLEAR WS 
 
            )CLEAR 1024KB  
      WS Size = 1.0MB  
      CLEAR WS 
 



APLX Language Manual  232 

  

            )CLEAR 100M  
      WS Size = 100MB  
      CLEAR WS 
 
            )CLEAR 2G  
      WS Size = 484MB  
      CLEAR WS 

Note that in the last example, the user requested 2GB but the operating system allocated only 484MB. 

Example valid only in APLX64: 

 
            )CLEAR 16G  
      WS Size = 16GB  
      CLEAR WS 

 

)CONTINUE 

 
 

The )CONTINUE command is implementation dependent, but when implemented this command will 

change the name of your active workspace to CONTINUE and )SAVE it, then leave APL. On re-

entering APL, the CONTINUE workspace is automatically loaded. Use of this command is not 
recommended, as it can quite easily lead to confusion on a multi-user system. 

 
             )CONTINUE 
       11.15.54 04/29/89 CONTINUE  

 

)COPY (lib) name (:pass) (name(s) 

 
 

Copies into the currently-active workspace named items from a saved workspace. For example, to 
copy functions FRED and JOE from a workspace called MYWS in library 3, you would enter: 

 
             )COPY 3 MYWS FRED JOE 
       SAVED  1991 - 06- 13 23.24.06  

If just the workspace name is used, the entire contents are copied: 

 
             )COPY MYWS 
        SAVED  1991 - 06- 13 23.28.17  

If the name of an object to be copied matches the name of an object already in the active workspace, 

the copy will overwrite the object already in the workspace. See also )PCOPY Protected copy, )SCOPY 

Silent copy, )SPCOPY Silent protected copy). If a WORKSPACE FULL or SYMBOL TABLE FULL 

error is encountered, the active workspace is left unchanged. You should note that the )COPY operation 

works by temporarily )SAVEing  the active workspace in the logical unit from which objects are being 

copied (or in a disc defined for temporary objects), extracting the required objects from the workspace 



APLX Language Manual  233 

  

identified in the )COPY command and then merging the active workspace and the objects to be copied. 
It is thus possible to see a DISC FULL message during a copy operation. 

Copying classes and objects 

)COPY can be used to copy classes and objects from a saved workspace. However, some special 
considerations arise: 

¶ If a class is copied, and in the original workspace it had a parent, then the )COPY will fail 

unless a parent class of the same name exists in the destination workspace, or is copied at the 
same time. APLX will report an error "Class XXX not copied, missing parent class YYY"  

¶ If a variable containing an object reference is copied, APLX will attempt to copy both the 

object reference, and the object itself together with its saved property values. However, a class 

of the same name as that of the original object must exist in the destination workspace (or be 

copied in at the same time). If this is not the case, the )COPY will proceed, but the object 

reference will be set to refer to the Null object. APLX will print a warning "At least one object 
reference set to NULL (class does not exist)".  

¶ When an object instance is copied in, it is possible for data to be lost. This will happen if the 

original version of the object (in the saved workspace) had a non-default property which is no 

longer valid in the current destination workspace (because the version of the class is different). 

If this happens, the )COPY will proceed, but APLX will print a warning "At least one object 
property not copied (not valid for class)".  

If you )COPY a list of classes and/or objects, or an entire workspace, APLX will first copy any top-

level classes (classes with no parent), then classes of the first generation (children of top-level classes), 

and so on. It will then )COPY object instances and other items. This guarantees that no object 

properties or class hierarchy information is unnecessarily lost. 

Library specification and path names 

There are two different ways in which you can specify where APLX should look for the saved 

workspace: 

¶ You can specify the workspace name as just the base name of the workspace, for example 

MYWS or Budget03 , optionally preceded by a library number. In this case, APLX appends any 

default file-extension to the name (. aws for Windows, AIX or Linux), and searches in the 

directory corresponding to the specified library number. Library numbers 0 to 9 are set up 

either using the Preferences dialog, or by using the ŢOQWPV system function. Library 10 

contains the utility and demonstration workspaces supplied with APLX. If you omit the library 
number, library 0 is assumed. 

¶ You can specify a full operating-system path name, including directory separation characters, 

such as /usr/workspaces/Budget03.aws  (Linux), C: \ workspaces \ Budget03.aws  

(Windows), or MacHD::workspaces:Budget03  (MacOS). APLX uses the path name exactly as 

supplied, so under Linux, Windows and AIX you usually need to provide the .aws  file 

extension. 

See the description of the )LOAD system command for more detail on libraries and path names. 



APLX Language Manual  234 

  

Indirect copy 

If one or more of the names following the )COPY command is enclosed in parentheses and is the name 

of a variable in the workspace to be copied from which is a simple character scalar, vector or matrix, 

then the contents of the variable are interpreted as the name or names of objects to be copied. The 

alternative forms of )COPY (i.e. )PCOPY, )SCOPY, and )SPCOPY) will also accept name arrays as part of 
the name list of the command. 

 
             (THIS THAT THE_OTHER) ģĵ)FCVC) 
             PCOGUģŢDQZ")VJKU"VJCV"VJGaQVJGT) 
             )WSID TEST  
       WAS TEST 
             )VARS 
       NAMES   THAT    THE_OTHER       THIS  
             )SAVE 
       1991 - 06- 13 19.14.26 TEST  
             )CLEAR 
       CLEAR WS 
             )COPY TEST (NAMES)  
       SAVED  1991 - 06- 13 19.14.26  
             )VARS 
       THAT    THE_OTHER       THIS  

 

)CS  (number) 

 
 

)CS followed by an integer from 0 to 7 establishes APL.68000 Level I or Level II mode. The 

Compatibility Setting is a workspace parameter and defaults to 0. See ŢEU for details of the 
parameters. For example,  

 
             )CS 0  
             1 2 3[2]  

generates a RANK ERROR whilst Compatibility Setting 1 (APL.68000 Level I mode) will return the 
result 2 for the same expression. The Compatibility Setting is a workspace parameter and defaults to 0 

 

)DIGITS  number 

 
 

Followed by a whole number between 1 and 15, this command sets the maximum number of 

significant digits displayed after the decimal point in results. On its own (without any following 

number) it asks the current setting of DIGITS. The default setting is 10. (See also the system variable 
ŢRR."Rtkpv"rtgekukqp+ 

 
             )DIGITS  
       IS 10  
             )DIGITS 8  
       WAS 10 
    



APLX Language Manual  235 

  

          )DIGITS  
       IS 8  
             ŢPP 
       8 

 

)DISPLAY  name  

 
 

Displays the structure of a variable, in the same form as that returned by the ŢFKUPLAY system 
function. 

 
      FCVCģ*4"4ŝŜ6+")JGNNQ) 
      )DISPLAY DATA  
ťĥţţţţţţţţţţţţţţŦ 
Ť"ťĥţţŦ"ťĥţţţţŦ"Ť 
Ť"Ħ3"4Ť"ŤJGNNQŤ"Ť 
Ť"Ť5"6Ť"ŧţţţţţŨ"Ť 
Ť"ŧ¡ţţŨ"""""""""Ť 
ŧĨţţţţţţţţţţţţţţŨ 
 
      Zģĵ*4"5ŝŜ8+"*3"3ŝ3+"*3"4"4ŝŜ6+" 
      )DISPLAY X  
ťţţţţţţţţţţţţţţţţţţţţţţţţŦ 
Ť"ťĥţţţţţţţţţţţţţţţţţţţŦ"Ť 
Ť"Ť"ťĥţţţţŦ"ťĥŦ"ťťĥţţŦ"Ť"Ť 
Ť"Ť"Ħ3"4"5Ť"Ħ3Ť"ĦĦ3"4Ť"Ť"Ť 
Ť"Ť"Ť6"7"8Ť"ŧ¡Ũ"ŤŤ5"6Ť"Ť"Ť 
Ť"Ť"ŧ¡ţţţţŨ"""""ŧŧ¡ţţŨ"Ť"Ť 
Ť"ŧĨţţţţţţţţţţţţţţţţţţţŨ"Ť 
ŧĨţţţţţţţţţţţţţţţţţţţţţţţŨ 

See the description of ŢFKURNC[ for details of the display format. 

 

)DROP (lib) name (:pass) 

 
 

Drops (erases) a named workspace from disk. If the saved workspace has been saved with a password 

(see )WSID and )SAVE),  then the )DROP command must include the correct password. For example: 

 
             )DROP MYWS 
             )DROP 1 MYWS 
             )DROP MYWS:SECRET 
             )DROP /usr/workspaces/MYWS.aws  

Library specification and path names 

There are two different ways in which you can specify where APLX should look for the workspace to 

be erased: 

¶ You can specify the workspace name as just the base name of the workspace, for example 

MYWS or Budget03 , optionally preceded by a library number. In this case, APLX appends any 



APLX Language Manual  236 

  

default file-extension to the name (.aws  for Windows, AIX or Linux), and searches in the 

directory corresponding to the specified library number. Library numbers 0 to 9 are set up 

either using the Preferences dialog, or by using the ŢOQWPV system function. Library 10 

contains the utility and demonstration workspaces supplied with APLX. If you omit the library 
number, library 0 is assumed. 

¶ You can specify a full operating-system path name, including directory separation characters, 

such as /usr/workspaces/Budget03.aws  (Linux), C: \ workspaces \ Budget03.aws  

(Windows), or MacHD::workspaces:Budget03  (MacOS). APLX uses the path name exactly as 

supplied, so under Linux, Windows and AIX you usually need to provide the .aws  file 

extension. (Note: In Client-Server implementations of APLX, you can specify that the path 

refers to the Client or Server machine by preceding the file name with an Up Arrow Ĥ or Down 

Arrow Ħ). 

See the description of the )LOAD system command for more detail on libraries and path names. 

 

)EDIT  (type) name 

 
 

APLX includes a 'full screen' editor for functions, operators, variables and classes. This editor may be 
accessed via: 

 
             )EDIT  

The editor is entered thus: 

 
          +GFKV"PCOG""""""""""ő"GFKV"GZKUVKPI"QDLGEV">PCOG@ 
                              ő EDIT NEW FUNCTION OR OPERATOR <NAME> 
          +GFKV"2"PCOG""""""""ő"GFKV"PGY"QT"GZKUVKPI"HWPEVKQP"QT"QRGTCVQT">PCOG@ 
          +GFKV"3"PCOG""""""""ő"GFKV"PGY"QT"GZKUVKPI"XCT">PCOG@ 
          +GFKV"4"PCOG""""""""ő"GFKV"PGY"QT"GZKUVKPI"ENCUU">PCOG@ 

)EDIT  can also be used to edit individual class members, rather than the whole class. In this case, you 
specify the fully-qualified name in the form ClassName.MemberName.  

See also ŢGFKV 

 



APLX Language Manual  237 

  

)ERASE name(s) 

 
 

Erases named global variables, functions, operators and classes from the active workspace. The 

command is followed by the name, or names, of the objects to be erased. If an item cannot be erased, a 
message to that effect is displayed. Local variables are not erased -  use ŢGZ if you wish to do this. 

 
             +GTCUG"ĢEE"PGOQ 
       NOT FOUND: NEMO 

Indirect erase 

If one or more of the names following the )ERASE command is enclosed in parentheses and is the 

name of a variable which is a simple character scalar, vector or matrix, then the contents of the 
variable are interpreted as the name or names of items to be erased. 

 
             )VARS 
       A       B       C       DATA    MAT 
             )ERASE A C  
             )VARS 
       B       DATA    MAT  
             NAMESģŢDQZ")D"FCVC) 
             NAMES 
       B 
       DATA 
             )ERASE (NAMES)      (rows of NAMES interpreted as object to erase)  
             )VARS 
       MAT     NAMES  
             )ERASE NAMES 
             )VARS 
       MAT 
             FCVCģ)CaPCOG'  
             )VARS 
             DATA    MAT  
             )ERASE (DATA)       (same error message as direct erase)  
       NOT FOUND: A_NAME 

Erasing individual class members 

)ERASE can be used to erase a member (a method of property) from a class definition, using dot 

notation in the form ClassName.MemberName to specify which member should be deleted. The 

change will immediately be reflected in any existing instances of the class: 

 
      PTģŢPGY"EQNQTaRQKPV 
      RV0ŢPN"4"""""ő"Nkuv"rtqrgtvkgu"qh"qdlgev"RV 
COLOR 
X 
Y 
Z 
      )ERASE COLOR_POINT.Z 
      RV0ŢPN"4"""""ő"Qdlgev"RV"pqy"jcu"qpg"nguu"rtqrgtv{ 
COLOR 
X 
Y 



APLX Language Manual  238 

  

Erasing whole classes 

)ERASE can also be used to erase a class definition (and all the methods and properties defined in it). 

Any instances of the class will become instances of the erased class's parent, if there is one, or of the 

NULL class, if the erased class did not have a parent. Similarly, any classes which inherited from the 

erased class will be re-parented so that they now inherit from the erased class's parent. 

In this example, class POINT3D inherits from COLOR_POINT which in turn inherits from POINT. PT is an 

instance of COLOR_POINT: 

 
      )CLASSES 
COLOR_POINT    POINT   POIN T3D 
      ŢCLASS POINT3D 
{POINT3D} {COLOR_POINT} {POINT}  
      RVģŢPGY"EQNQTaRQKPV 
      RV0ŢENCUUPCOG 
COLOR_POINT 

If we erase the class COLOR_POINT, its child class POINT3D is re-parented. The instance PT becomes an 

instance of the original parent: 

 
      )ERASE COLOR_POINT 
      ŢCLASS POINT3D 
{POINT3D} {POINT}  
      RV0ŢENCUUPCOG 
POINT 

If we now erase the class POINT, POINT3D will now have no parent, and the instance PT becomes an 
instance of the NULL class: 

 
      )ERASE POINT  
      RV0ŢENCUUPCOG 
NULL 
      ŢCLASS POINT3D 
{POINT3D}  

 

)FNS (first (last)) 

 
 

Lists the names of all the functions in the current workspace. If the command is followed by a 

character or group of characters, the list gives the names of all functions beginning with that character 

or group of characters onwards (the parameter first , used on its own). A second character or group 

of characters after the command (the parameter last ) is used to end the list of names. Names are 
shown in alphabetic order, fully sorted. 

 
             )FNS 
       AFE     CONTINUE        HELP    INFO    SCLOSE  SLOG    SMOUNT  SOPEN  
       SREAD   SRET    SUNMOUNT        TRANSLATE       ĢOGTT"""ĢUPCOG 
             )FNS T  
       VTCPUNCVG"""""""ĢOGTT"""ĢUPCOG 
             )FNS SM 



APLX Language Manual  239 

  

       SMOUNT  SOPEN   SREAD   SRET    SUNMOUNT         TRANSLATE  
       ĢOGTT"ĢUPCOG 
             )FNS SM T  
       SMOUNT  SOPEN   SREAD   SRET    SUNMOUNT         TRANSLATE 

 

)GROUP name(s) 

 
 

Gathers functions and variables into a group. The first name given will be the name of a group, and the 

subsequent names are those of variables, functions and operators to be placed in the group. If only the 

group name is supplied, the effect is to disband that group. 

Groups can be used with the commands )ERASE and )COPY to deal with a set of objects in a single 

operation. However, they are generally considered obsolete, because APLX support 'indirect' )ERASE 
and )COPY, where the list of names is contained in an APL variable. 

 
      )FNS 
COVARIANCE      MEAN    MEDIAN  MODE    STANDARD_DEV    VARIANCE  
      )GROUP AVERAGES MEAN MEDIAN MODE 
      )GRPS 
AVERAGES 
      )GRP AVERAGES 
MEAN    MEDIAN  MODE  
      )ERASE AVERAGES 
      )FNS 
COVARIANCE      STANDARD_DEV    VARIANCE  
       

 

)GRP name(s) 

 
 

Lists the names of objects in group name. 

 

)GRPS (first (last)) 

 
 

Lists the names of all the groups in the current workspace. If the command is followed by a character 

or group of characters, the list gives the names of all groups beginning with that character or group of 

characters onwards (the parameter first, used on its own). A second character or group of characters 

after the command (the parameter last) is used to end the list of names. Names are shown in alphabetic 
order, fully sorted. 

 
             )GROUP FILEFNS SOPEN SREAD SRET 
             )GRP FILEFNS  
       SOPEN   SREAD   SRET  
 



APLX Language Manual  240 

  

             )GRPS 
       FILEFNS 

 

)HOST (command) 

 
 

The )HOST command allows the user to issue a command directly to the host environment and display 
the result without leaving the APL workspace. 

When used without a command, it displays the operating system under which you are working: 

 
              )HOST 
        IS AIX  

When used with a command specified, the command is passed to the operating system and executed. 
For example: 

 
              )HOST pwd  
         /usr/apl/aplx  

Control-C or Break in the Interrupt menu will end the command and return to APL. Otherwise, control 

returns to APL when the command terminates, or after a timeout value of 10 seconds. (For finer 

control of the timeout, see the ŢJQUV system function) 

The )HOST command is highly implementation-specific, and some operating system commands may 
not be allowed. Points to note are: 

¶ AIX  and Linux:  Interactive commands can be executed if required. 

¶ MacOS: )HOST is not implemented under MacOS 8 and 9 except to report the OS name. Under 

MacOS X, )HOST is implemented. It invokes the BSD terminal shell to run Unix-style 

programs such as 'ls' or shell scripts. However, interactive programs are not supported. 

¶ Windows: )HOST is implemented under Windows, although interactive programs are not 

supported. Note that, under Windows, many common commands are 'built-in' to the command-

line shell, rather than being separate executable programs. Under Windows NT, 2000, XP and 

Vista, you can run these using the 'CMD' program with the '/C ' option. (Under Windows 95, 98 

and ME, use 'COMMAND.COM /C'). For example: 

 
 
                  )HOST CMD /C DIR C: \ PROG*.*  
             Volume in drive C has no label.  
             Volume Serial Number is 07D0 - 0B11 
 
             Directory of C: \  
 
            17/11/2000  21:05       <DIR>          Program Files  
                           0 File(s)              0 bytes  
                           1 Dir(s)  14,522,580,992 bytes free  



APLX Language Manual  241 

  

Special considerations for Client-Server implementations of APLX 

In Client-Server implementations of APLX, the front-end which implements the user-interface (the 

"Client") runs on one machine, and the APLX interpreter itself (the "Server") can run on a different 

machine. The two parts of the application communicate via a TCP/IP network. Typically, the Client 

will be the APLX front-end built as a 32-bit Windows application running on a desktop PC, and the 
Server will be a 64-bit APLX64 interpreter running on a 64-bit Linux or Windows server. 

In such systems, )HOST allows you to specify whether the command should be executed on the Client 

or the Server machine. You do this by preceding the command string with either an Up Arrow Ĥ to 

indicate that the command should be executed on the Client, or a Down Arrow Ħ to indicate that it 

should run on the Server. If you do not specify, the default is that the call should take place on the 
Client. 

In this example, the Client is running under Windows 2000, and the Server under Linux x86_64: 

 
            +JQUV"Ĥeof"1e"xgt 
      Microsoft Windows 2000 [Version 5.00.2195]  
 
            +JQUV"Ħwpcog"- nsp  
      Linux nx6125 x86_64  

 

)IN  (lib) filename (name(s)) 

 
 

Imports a Transfer File into the active workspace. Transfer Files are text versions of APL objects that 

are created by the )OUT command, or equivalent APL functions. They may be created by APLX or by 

another APL interpreter such as IBM's APL2. The Transfer File format is fully explained under the 

)OUT and ŢVH commands. The default file extension for Transfer Files is .atf . 

You can import either the whole Transfer File, or just selected items as specified by the 'names' 

parameter of the command. For example: 

 
             )FNS 
             )IN DISPLAY             (Read the whole Transfer File)  
             )FNS 
       ABSTRACT        DISPLAY DESCRIBE  
             )CLEAR 
       CLEAR WS 
             )IN 3 DISPLAY DESCRIBE  (Read specified objects from Transfer  
                                      File in Libr ary 3)  
             )FNS                      
       DESCRIBE 
             )IN 2 DODO              (Transfer File not found)  
       WS NOT FOUND 

Library specification and path names 

There are two different ways in which you can specify where APLX should look for the Transfer File: 



APLX Language Manual  242 

  

¶ You can specify the just the base name of the file, for example MYWS or Budget03 , optionally 

preceded by a library number. In this case, APLX appends the default file-extension .atf  to 

the name, and searches for the file in the directory corresponding to the specified library 

number. Library numbers 0 to 9 are set up either using the Preferences dialog, or by using the 

ŢOQWPV system function. Library 10 contains the utility and demonstration workspaces 

supplied with APLX. If you omit the library number, library 0 is assumed. 

¶ You can specify a full operating-system path name, including directory separation characters, 

such as /usr/transfer/Budget03.atf  (Linux), C: \ transfer \ Budget03.atf  (Windows), or 

MacHD::transfer:Budget03.atf  (MacOS). APLX uses the path name exactly as supplied, so 

you usually need to provide the .atf  file extension explicitly. (Note: In Client-Server 

implementations of APLX, you can specify that the path refers to the Client or Server machine 

by preceding the file name with an Up Arrow Ĥ or Down Arrow Ħ). 

See the description of the )LOAD system command for more detail on libraries and path names. 

 

)LIB  (lib)  

 
 

Lists the names of the workspaces in the library or explicit path specified (or Library 0 by default). If 

the command (and library number, if used) are followed by a letter, only workspaces beginning with 
that letter are listed. 

 
             )LIB  
       COAL         CONSOLE       FORMAT      MIRSEQ    NEWGRAF       
       PSYS         SYSFNS      
             )LIB C  
       COAL         CONSOLE        
             )LIB 3  
       CALCULATE    DISPLAY  
             )LIB C: \ workspaces \ budgets  
       Budget02     Budget03     BudgetDraft  

Note that only APLX workspaces are shown in the list, not other files. Under Windows, Linux and 

AIX, these will have the file extension .aws  (any workspaces you save using a full pathname without 
this extension will not be listed). The file extension is not shown in the )LIB  display. 

Library specification and path names 

There are two different ways in which you can specify the directory where APLX should look for the 
workspaces: 

¶ You can specify a numeric library number, as shown in the first three examples above. Library 

numbers 0 to 9 are set up either using the Preferences dialog, or by using the ŢOQWPV system 

function. Library 10 contains the utility and demonstration workspaces supplied with APLX. If 

you omit the library number, library 0 is assumed. 

¶ As shown in the last example above, you can specify a full operating-system directory name, 

including directory separation characters, such as /usr/workspaces/  (Linux), 












































































































































































































































































































































































































































































































































































