APLX Language Manual

Version 5.0

Copyright © 1985200 MicroAPL Ltd. All rights reserved worldwide.

APLX, APL.68000 and MicroAPL are trademarks of MicroAPL Ltd. All other trademarks
acknowledged.

APLX is a proprietary product of MicroAPL Ltd, and its use is subject to the license agreement in
force. Unauthorized copying or use of APLX is illegal.

MicroAPL Ltd makes no warranties in respect of the suitability of APLX for any particular purpose,

andaccepts no liability for any loss arising out of the use of APLX or arising from the information
contained in this manual.

MicroAPL welcomes your comments and suggestions.
Please visit our website: http://www.microapl.co.uk/apl

Version5.0 June20M

APLX Language Manual 5

Contents
Section 1: APL Fundamentals 13
The Workspace 15
Data 19
Array type & prototype 21
Display of arrays 25
Vector Notation 27
Primitive Functions 28
Primitive Operators 37
Axis Operator 41
Formatting 42
Names 44
Specification (Asginment) 45
Multiple specification 46
Selective specification 47
Binding strengths 51
Bracket indexing 53
Userdefined Functions 55
Userdefined Operators 59
Classes and Objects 61
Mixins 71
Branching and labels 75
Control Structures 77
System commands 83
System Functions and Variables 84
System Methods 85
System Classes 86
Files and Databases 87
Section 2: APL Primitives 89
+ Conjugate 91
+ Add 91
- Negate 92
- Subtract 92
x Sign of 93
x Multiply 93
+ Reciprocal 94
+ Divide 94
L Ceiling 95
L Greater of 96
I Floor 96
I Lesser of 98
| Absolute value 99
| Residue 99
S Index generator 100
S Index of 100

? Roll 101

APLX Language Manual

? Deal

* Exponential

* To the power of
ceNatural log
ceLog to the base
4 Pitimes

a Circular and Hyperbolic functions

I Factorial

I Binomial

t Matrix inverse

t Matrix divide

< Less than

ij Less than or equal
= Equal

J Greater than or equal

> Greater than

| Not equal

I Depth

I Match

IJNot Match

T Enlist

T Membership
s Find

] Unique

] Union

T Intersection

~ Not

~ Without

I Or

N And

S Nor

$ Nand

§ Shape of

S Reshape

, Ravel

, Catenate, Laminate
r 1st axis catenate
N Reverse

N Rotate

k 1st axis rotate
n Transpose

H First

HTake

HDrop

] Enclose

] Partition (with axis)
K Disclose

K Pick

I Index

N Grade up

0 Grade down

102
102
103
103
104
104
105
106
106
107
108
109
109
110
111
112
112
113
113
114
115
116
117
118
118
119
120
120
121
121
122
122
123
123
125
127
129
129
130
130
131
132
133
135
136
137
139
141
142
143
146

APLX Language Manual 7

| Encode 149
L Decode 150
§ Picture format 151
OFormat 154
OFormat by specification 154
OFormat by example 156
n Execute 160
L Stop 161
L Left 161
K Pass 162
K Right 162
T Evaluated input 163
T Output with newline 163
(ECharacter input 164
(EBare output 164
Reduction 165
N 1st axis reduction 167
\ Scan 168
N 1st axis scan 169
Compresion, Replication 169
n 1st axis Compress, Replicate 171
\ Expard 172
N 1st axis expand 173
. Inner product 173
T O0Outer product 175
" Each 176
[] Axis 177
f Zilde 180
| Statement Separator 180
h Line Editor 181
R Lock 183
Section 3: Errors 185
Overview of error handling and the State Indicator 187
Error trapping usingTry...EndTry 192
Error Trapping® TGJ GE + 194
Error Trapping® TGT Z + 196
Error Codes T GV + 199
Error Codes TNGT + 200
Error Messages 201
Section 4: Component File Systems 205
N 'based File System 207
N File read 211
n File write 214
OFile hold 215
0 File drop 217
T H z Zamponat File System 219
Section 5: Native File Functions 223
APLX Native File Supprt 225

Native File System Functions 227

APLX Language Manual 8

Section 6: System Commands 229
)JCLASSES (first (last)) 231
)CLEAR (wssize) 231
JCONTINUE 232
)JCOPY (lib) name (:pass) (name(s) 232
)CS (number) 234
)DIGITS number 234
)DISPLAY name 235
)DROP(lib) name (:pass) 235
)EDIT (type) name 236
JERASE name(s) 237
)ENS (first (last)) 238
JGROUPname(s) 239
) GRPname(s) 239
JGRPS(first (last)) 239
JHOST (command) 240
)IN (lib) filename (name(s)) 241
)LIB (lib) 242
)LOAD (lib) name (:pass) 243
)NMS (first (last)) 246
)OPS (first (last)) 247
)JOFF 247
JORIGIN (number) 247
)OUT (lib) filename (name(s)) 248
JPCOPY (lib) name (:pas) name(s) 250
JREPARENTCclass parent 250
JRESET (number) 251
)SAVE (lib) (name (:pass)) 251
)SCOPY (lib) name (:pass) (name(s)) 252
)SDROP(lib) name (:pass) 252
)SI (number) 252
)SIC (number) 253
)SICL (number) 253
)SINL 254
)SIS (number) 254
)SIV (number) @)SINL (number) 255
)SLOAD (lib) name (:pass) 255
)SPCOPY(lib) name (name(3) 255
)SSAVE (lib) (name (:pass)) 256
)SWSID (lib) name (:pass) 256
)SYMBOLS(number) 256
)TABS (number) 257
)TIME 257
)VARS (first (last)) 258
JWIDTH (number) 258
JWSID (lib) (name (:pass)) 259
)XLOAD (lib) (name (:pass)) 260

Section 7: System Functions & Variables 261
T CAlphabet, Upper Case 263
T cAlphabet, Lower Case 263

T C Htomic Function 263

APLX Language Manual 9

T C Kccount Information 264
T C @bject Attributes 264
T C Atomic Vector 266
T DBackspace 266
T D Q\Z&ctor to/from Matrix 266
T EControl Characters 268
T E C ICall external static method 268
T E Eonsole Control 269
T E J CDrav Chart of Data 272
T E Burrent Line 275
T E N CClass hierarchy for object or class 275
T E N C U Béddences to uselefined and external classes 276
T E Q EEbhfigure APL 276
T E Tanonical Representation 277
T E Bompatibility Setting 279
T E Comparison Tolerance 280
T PDigits 282
T F DDelimited Blank Removal 282
T F K U R Di§play Array Structure 282
T F Relay 286
T F Data Representation 286
T G Execute Alternate 290
T G Execute Controlled 291
T G F KMt fn/op/var 292
T G @rror Matrix 292
T G TEdror Message Vector 293
T G THJror signalling 293
T G THEror trapping 295
T G Brror simulate 295
T G ¥rror Type 297
T G Event Record 297
T G XEvent Arguments 298
T G X EMaluate external expression 299
T G XBvent Name 300
T G XBXent Target 300
T G Expunge 300
T G Z R (EXpdrt APL array to file in specified format 301
T HC R R @pgpénd component to file 305
T H Eormat Control 306
T HE T G Créai a new component file 306
T H E U KRedd component size information 308
T HF G N Gale@& component from a file 309
T HF T Q& components from start or end of file 309
T H F \WRplicate component file, reclaiming wasted space 310
T HGT (Bth& componeriile 310
T H G T TR@tlirn operatingystem error 311
T HJ QNofdl/Release component files for exclusive access 311
T H Konvert formatted input 312
T H N RR&turn names of component files in directory 313
T H OR¥rmatting Function 313

T H P C OR&Rturn names of currentlyed files 319

APLX Language Manual 10

T H P W@&iurn tie numbers in use 319
T HT F ®&ad componeritle access matrix 320
T HT F Ré&ad component information 320
T HT F Réad file information 321
T HT G ®éad component from a file 321
THT GP GRén@me component file 322
T HT GR N Rdpl&ce existing compone 322
THT G U Ket@&aximum file size 323
T H U K Ré&ad filesize and componemange information 323
T H U V GdE componeriile access matrix 324
T HU YV BN (tie) an existing file for shared use 325
T HV Kdpen (tie) an existing file for exclusive use 326
T HWP MKt® component file(s) 327
T HY T KAgpgend, replae or insert component 328
T H Eix function/operator/class 330
T J Bard Copy 331
T 1 GV E N@&etréference to named class 332
T J Q dmmand to Host 333
T Kidle Character 334
T K Esert into Class 335
T K B Number 337
T K O R Qripdrt data from file in specified format 337
T KPTANCESnstances of a Class or Descendants 340
T K @dex Origin 340
T N.inefeed Character 341
T N Eine Counter 341
T N Gast Exception 341
T N GLIne Error Report 343
T N KReturn names of files in directory 343
T N Eatent Expression 344
T Months 344
T O Miissing Character 345
T O Q WRlIvcate Libraries 345
T PNull Character 347
T P Oefine External Function 347
T P CR R @ppénd data to aative file 357
T P Bame Classification 357
T P ET G Crédie a new native file and tie it 358
TP GT (Bth&e a native file 359
T P G T TR@tlirn an error mssage describing the last file error 360
T P GCfeate new instance of class 360
T P Name List 365
T P N QIEobtk/Unlock a file or a segment of a file 366
T P P C @rRéturn file names of all tied files 368
T P P WRetlrn tie numbers of all tied files 368
T P T GRead data from a native file 368
TP T GP Chlalie the name of a native file 371
T P T GR NRegpd8e data in a native file 372
T P T G U KlierGhe size of a native file 372
T P U KReturn file size information 373
T P V KO@en an existing file and associate it with a tie number 373

APLX Language Manual 11

T P V[BaBSet the file type/creator for a MacOS file 374
T P WNRaturn reference to null object 375
T P WP Kit@ native file(s) 375
T P Y T KWfite data to a native file 375
T Q Bverlay 377
T R H M&et up Function keys 378
T R Rrint Precision 379
T R Prompt Replacement 380
T RT QH KPHrfarmance Profiling 380
T R Print Width 383
T TCarriage Return 384
T T G E N Change class of objects 384
T T GR C TG@hényge parent of useefined class 385
T T Random Link 386
T U GV $¢Rup external environment 386
.Net 386
Java 388
Ruby 389
T U Ktate Indicator 391
T U Siherface to External Databa 391
T U Btring Search/Replace 409
Using modifier flags to specify how the search should be carried out 415
Technical considerations 417
T UV @Rp List 418
T U XShared Variable Control 418
T U XSpared Variable Offer 419
T U XShared Variable Query 420
T U XShared Variable Retrac 420
T U[G¥mbol Table Used/Total Count 420
T VTab Character 421
T V BndT V E Zl'erminal Control Characters 421
T V Hransfer Form 421
T V J Re&ference to current object 423
T V K Qi@e/Date Text 423
T V Translate Text to/from External 424
T V Uimestamp 424
T V Yerminal Type 424
TVTCHd&e 425
T WEQdnvert text to/from Unicode 425
T WNser Load 426
T X Merify formatted input 426
T YWeekdays 427
T Y Workspace Available 427
T Y C TAtgument to event callback function 427
T Y @ait for Event 428
T Y Windowing Interface 429
T Y U GQWject Name 431
T Y U U KSiz&of Workspace 432

Z OQbnvert to/from XML 432
T

APLX Language Manual 12

Section 8: System Methods 441
T D C B&se (parent) class 443
T E J K N FAhielRlasses 444
T ENCUU mNen@ef class 445
T E N C U URef8érdnce to objestclass 445
T E N Q@ré&ate copies of object 446
T F G UD&scribe public members 449
T F Bet display form 451
T F Display summary of object 452
T J C P FHdr@le to object 454
T O G O D Gédidils of class members 454
T O K Z B another class into object 455
T O K Z KReturn list of mixins 456
T P Names of public members 457
T Q K®bject ID 459
T RCT BRs¢ (parent) class 459
T T GHdrce reference result 460
T U V CRr@perty names andhlues 461
T WP ORefove mixins from object 462
T X CRérce value result 463
Section 9: Interfacing to other languages 465
Overview of interfacing to other languages 467
Using External Classes 469
Interfacing to .Net 475
Interfacing to Java 483
Interfacing to Ruby 486
Interfacing to the R statisticidnguage 490
Custom interfaces 500
Auxiliary Processors 501
Section10: Performance Profiling 511
Performance Profiling 513
Appendix: APLX Character Set and Unicode Mapping 518

APLX Character set 519

APLX Language Manual

Section 1: APL Fundamentals

13

APLX Language Manual 15

The Workspace

Theworkspacas a fundametal concept in APL. It enables you to develop a project as a series of
small pieces of program logic. These are organizedfumctions,operatorsandclassesas described
below. (For brevity, we sometimes use the term ‘function’ in this discussidiertaoarall three of

these). All of these cexist in the workspace and are instantly available for inspection, amendment,
and execution or for use on another project.

Data of all shapes and sizes (storeddnableg can inhabit the same workspace asftimctions, and
is also instantly available, which greatly facilitates testing. And, of course, the entire collection can be
saved on to disk by a single command or menu option.

Functions, operators, and classes can quickly be constructed, testediogjatingr in various
combinations, and amended or discarded. Most importantly, it is very easy in APL to create test data
(including large arrays), for trying out your functions as you develop them. Unlike many traditional
programming environments, you dotmeed to compile and run an entire application just to test a
small change you have madgou can test and experiment with individual functions in your
workspace. This makes the workspace an ideal prototyping area for 'agile development’, and helps
explin why APL is sometimes referred to as a 'tool of thought'.

Functions, Operators, Classes

In APL, the termfunctionis used for a basic program module. Functions can either barbtalthe

APL interpreter (for example, thefunction which does additig, or defined by the user as a series of
lines of APL code. Functions can take 0, 1 or 2 arguments. For example, when used for-addition
takes two arguments (a left argument and a right argument). The arguments to functions are always
data (APL arrays)Functions usually act on whole arrays without need for explicit program loops.

An operatoris like a function in that it takes data arguments, but it also takes either one or two
operandswhich can themselves be functions. One of the commuasdy builtin operators is Each

(7). This takes any function as an operand, and applies it to each element of the supplied data
arguments. Just as you can define your own functions as a series of lines of APL code, you can also
define your own operators.

A classis a ollection of functions and possibly operators (together knownethod}, together with

data (placed in namautopertiesof the class). A class acts as a template from which you can create
objects(instances of classes), each of which can have its ownafdpe class data, but which shares

the methods with all other instances of the class. A class can be used to encapsulate the behavior of a
specific part of your application.

Workspace size

The workspace size is stated on the screen when you start ase88ibn. Depending on the
workspace size, it is either expressed in 'KB' 'MB' or 'GB', where:

APLX Language Manual 16

1 One 'GB' represents a Gigabyte, approximately a thousand million bytes
1 One 'MB' represents a Megabyte, approximately a million bytes
1 One 'KB' represents a Kibyte, approximately a thousand bytes, and

1 One byte is (again approximately) the amount of computer memory used to store a single
character.

During the session you can find out how much space is free by using the system furvotwhich
stands for Workspace Available.

The maximum size of the workspace depends on how much memory (RAM) you have on your
system, and the amount of disk space reserved for virtual memory.

Managing the workspace

There aresystem commandasr enquiringabout the workspace and doing operations that affect it
internally. The most useful of these are mentioned below under the heading ‘Internal workspace
commands'. (Note that, to distinguish them from names in your program, the names of system
commands staxvith a right parenthesis.)

There are also system commands for copying the current workspace to disk, reloading it into memory
and doing other similar operations. These are mentioned below under the heading 'External workspace
commands'. You can either g/yphese commands directly, or (on most versions of APLX) use the File
menu to load and save workspaces.

Internal workspace commands

At the start of a session, you're given an empty workspace which has therexrans At any time

you can return to thigate by issuing the system commaadeAR. Any variables or functions you

have set up in the workspace are wiped out by this command, so if you want to keep them, you should
first save the workspace on to a disk.

You can get a list of the variable namesha workspace by using theaRs command. The command
)FNS produces the equivalent list of us#fined functions, and the commaybs gives the list of
userdefined operators. The commay@lASSES lists the classes you have defined.

If you don't want taclear the entire workspace, you can get rid of individual items by using the
commandERASE followed by the name(s) of the items(s) you want to remove.

APLX Language Manual 17

External workspace commands

Note: In practice, you will often use menus to load and save workspathsy than typing the system
commands described below. For example, rather than typo¥p, you can use the File menu to
open a dialog which allows you to select the workspace you want to load.

A collection of workspaces on a disk, or other storage nnedmialibrary. (It corresponds to a

directory or folder in the host operating system). Unless you change the library number associated
with each device, the device listed first when you tymeQ WP V(s@e)below under 'System

Functions') is Library 0, the next one is Library 1, and so on up to Library 9. (In most versions of
APLX, you can set up these libraries using the Preferences item of the Tools or APLX menu). Most of
the commands in thisection can include the number (0, 1 or whatever) to indicate which library the
command applies to. If no library number is given, APL assumes that library O is intended.

Library 10 is a special case. It contains the utility workspaces and examplesd@gsptiart of the
APLX installation.

The use of library numbers is a convenience which helps you organize your workspaces on disk, and
saves you from having to enter long path names when referring to them. But if you prefer, you can
enter the full path naento a workspace when you load and save it (or use the File menu).

To find out the names of the workspaces which you have already stored in library 0, use the command
)LIB . To list the workspaces supplied with APLX, uges 10

You can save the currenovkspace by simply issuing the commayshkVvE. Everything in the

workspace is copied on to the disk and the saved workspace is given the same name as the workspace
in memory. If you want the saved version to have a different name, you specify the (newv) nam
immediately after thgSAVE (e.g.)SAVE NEWNAME

The)LoAD command followed by the name of a workspace brings the named workspace back into
memory. The workspace already in memory is overwritten.

If you want to bring specific functions or variables imemory, but don't want to overwrite the
workspace already there, you can usedo®y command.

You can get rid of a workspace on a disk by usingire©Pcommand.

System variables

What goes on in the workspace is conditioned to some extent by thet aattergs of system
variables. These are buitt variables, whose names begin with '

Some system variables you may occasionally want to enquire about or (in some cases) alter are:

1 T Y CWorkspace available: the number of bytes available for use wdhespace.

APLX Language Manual 18

1 T RRPrint precision: the number of digits displayed in numeric output. The default setting is
10.

1 T R YPrint width: the number of characters to the line. On most systems, the default setting is
80 (or the size of the visible window).

1 T NzLatent Expression: the expression or tdgfined function in this variable is executed
when the workspace is loaded. You might, for example, write a function which set things up
for you when you started a session and assign its name mnless you asgn a value to
T N Zt's empty.

You can find out the value of a system variable by typing its name. For example, to see the setting of
T R,Rhe variable which determines how many digits are displayed in numeric output, you would type:

TPP
10

You canreset the value of most system variables by using the syymbBbr example, to changeR R
from its normal value of 10, to a value of 6, you would type:

TRR" §" 8
System functions

We've been discussing system variables. System functions can atdégyaffeworking environment.
The system functiom 0 Q WHor example, is used to associate operasiygiem directories with the
library identifiers you use in your programs.

Other system functions duplicate tasks performed by system commands. For ekagrgystem
functionT P Which stands foname list can be used to produce a list of variables, functions,
operators, or classes, and the system fungtierzan be used texpungeindividual APL objects.
Similar jobs are done by the system commaradg8S)FNS)OPS)CLASSES , and)ERASE.

The difference between system functions and system commands is that system functions are designed
for use in usedefined functions, and behave like other functions in that they return results which can

be used in APL stateents. System commands, on the other hand, are primarily designed for direct
execution and can only be included in a u$efined function if quoted as the text argument to the
functionn (execute a function which causes the expression quoted to be executed.)

There are many System Functions and Variables available in APLX. They have other purposes besides
control of the workspace; for example they are used for reading and writin@fitbor accessing
databases, and for doing strisgarches using regular expressions.

APLX Language Manual 19

Data

A data item is composed of numbers, characters, or references to objects. It can be a constant or a
variable:

231 (constant)
NUM (variable)

System variables are a special class of variable. Their names startjvaidoamally their initial
values are set by the system, eg:

TPP

Data in APL is arranged iarrays. An array is a collection of data with a number of dimensicausk]
and a number of elements in each dimensstiag. Some or all of the eleemts may themselves be
arrays, making the arrayrestedarray with a third propertyepth

The commonest ranks of array are given special names:

Rank Name Dimensions
0 Scalar None (one element on ly)
1 Vector 1 (elements)
2 Matrix 2 (rows and columns)
3 3 (planes, rows and columns)
4 4 (blocks,planes,rows and columns)

Arrays of up to 63 dimensions are allowed in APLX.

The 'depth’ of an array is a measure of the degree of nesting in the array. A simyrieqteot) scalar

will have a depth of 0 and an array whose elements are all scalars (character @r)nsiksown as a
'simple’ array and has a depth of 1. In a nested array, the depth of the array is defined as the depth of
the deepest element. The following table shows the way in which the depth of an array may be
calculated:

Depth Description
0 Simple scalar
1 Simple array
2 Deepest element in the array is of depth 1
3 Deepest element in the array is of depth 2
n Deepest element in the array is of depth n -1

Character Data

Anything enclosed between either single or double quotes is treated as character data (you must use
the same typef quote mark to end the string as you use to begin it). This includes the digits, 0 to 9,
and any of the symbols on the keyboard. It also includes the invisible character, space. If you have

APLX Language Manual 20

used single quotes to delimit the string, then to include desinpte itself in the character data, type
it where it is required, followed immediately by another single quote. (Similarly for double quotes).
Alternatively, if you use singlguotes to delimit a string, you can place dotdpletes directly in the
string without doubling them up, and vieersa. The singleor doublequote characters used to
surround character data are not displayed by APLX.

CNHg) GB=EL23 (The characters in quotes are put in ALF)

ALF (When displayed, the quotes are dropped)

ABC - += 123
SCNH" ™ " m o x g ky"wugf"vg"cum'"vjgtuk]|] g"c

11 It contains 11 characters including spaces)
Cg) FQP)) V" YCNM) """ "*)y"gpvgtgf"cu"))
A

DON'T WALK Only one is displayed)
Cg$FQP) V" YCNME" """ " " *Cnvgtpegutesg" wukpi " fgwdng
A

DON'T WALK The result is the same)
Dg"))) VKU" VTWG") " " " "rst chdractar'df\a jiext Stimg)
B

'TIS TRUE

Dg"$) VKU" VTWG" $" """ "*Cnvgt pequates)g" wukpi " fqwdng
B

TIS TRUE
PwWog)723)""nnnmrmrrnnnnsxpkikvu"kpenwfgf"kp"ejctcev
NUM+10 characters rather than numbers and

DOMAIN ERROR can't be used in arithmetic)
VCDNGg5"883%[GU" PQ$

YES NO (Character data can be formed into

YES NO matrices. The six characters YES NO

YES NO are formed into a matrix of 3 rows and

6 columns)

APLX Language Manual 21

Array type & prototype

Any array has a 'type' which is zero for numeric elements and the blank chamactearéxter
elements. The type of the first element in an array is known as the ‘prototype’ of the array. The
prototype of an array is used in two important areas. Firstly, the prototype of an array is used to
determine the structure of an empty array fednfrom that array. Secondly, the prototype of an array
is used as a 'fill' element by those APL functions that can generate extra elements (for Bxample
‘take").

You can see the structure of an array, including its type and prototype, using the R §yG{em
function (or theDISPLAY system command). In desktop editions of APLX, you can also invoke a
Display Window to show array structure, using the-pppmenu which appears when you rightk
(or, under MacOS, cliclandhold) over a variable name. &the description of the F K U R 8y&G{em
function for details of how the structure is shown.

Empty arrays

An empty array is one in which at least one of the dimensions is zero. For example, an empty vector is
a vector of length 0. An array with four rows and zero columns is @tyematrix; it has shape (4 by
0), but does not contain any data elements.

A empty vector can most simply be made by one of the expressions shown below. Note that the 'type'
of the resultant empty vector can be be numeric or character.

TDISPNC[" S22 nmmmmmm o n TEKYRNC["))
O] 'l
empty numeric vector empty character vector

The alternative expressiansis often used, and may again create either a numeric or character empty
vector when used with the appropriate argument. (Higher dimensional empty arrays may be made by
expressions of the form43 oand so on see the entry f& reshape’).

TDISPNC[" 28§89¢g" " nwmmwnnnwt TEKURNC["28) RGVGT)
N Il
empty numeric vector empty character vector

An empty numeric vector carisa be created usirfg(Zilde), a primitive constant, which is equivalent
toS20r2s.2

APLX Language Manual 22

TFKURNC["F""" """ 8" Gorv{"pwogtke"xgevaqt
t Kk
2
i

[as—
Cr—«-+H

Prototypesof nested arrays

More complex empty arrays result when a nested array is used to generate the empty array. In each
case, it is the 'prototype’ (derived from the first element of the original array) that dictates the type and
structure of the resultant etymarray.

TFKURNC[") CDE) "*8§5+" """ v v« TEKYURNC["28) CDE) " *
(T gt g
~"0h0 " @R O — e e g
| IABC| |1 23]] [T
R o
) oy

The original array (on the left) is a two element nested array whose first element is itself a character
vector. The resultant empty vector (the expression on the right) is an empty vector which is itself a
nested array withhie prototype a length 3 character vector.

TFKURNC["*4"45886+")CDE)"""""""TFKURNC["28*4" 45S¢
) E—— Qu g
~"0h 0" e~ e J g
~TH" 3" A4 ~"T S CDE~" ~"tttmnowmmmmw g g
[134]" - [100]|
I~ B e
i — R S By

Similar considerations apply above, except that the type of the first element of the original array is
numeric,or even, as below, when the first element is mixed.

~ TFKURNC[" *4"48"3")M)"4")L)"+"*S6+""""""TFKURNC[" 28§
O O e

~"0h 0" "0-h- 0"~ L mp o Z 0

~"H" 3" M'3"4"5"6~" ~ H" 2 ~" -

[123] "~ - | [10 11

|+ | | + - N

N) " o) |

The prototype concept can be used to display tpe"tf an array. In the example below, the array is
first enclosed j to form a scalar and an empty vector made from the scalar #tally theA
(‘first’) function removes the additional level of nesting introduced.

TDISPLAY VAR

0h

~" 0-h 0" " oh|
~"~"9-h0o" " O-h-—-- .| |1ABC] |
~" ~"H"3"C" ~""4l'0h —
[11B2] 112 7] |

[+ =~ =] I I
~ ~: L |
Il)lf ' |

APLX Language Manual 23

TFKURNC["H28] XCT

|]
D>

"~ "-B- " |

et HTR2TT T =" A0 — '
|l ol [joof O[] |
RN
Mmoo
| o

e N |

The prototype as a fill element

Certain functions require the addition of fill' elements to arrays, for example the fureitalse’),\
(‘expand’) and (‘replicate’).These function can add extra elements to an existing array; the prototype
is used to determine the type and shape of the extra elements.

The fill element depends on the type of the array being extended, as follows:

Type of array Fill Element
Numeric Zero
Character Space
Prototype or first element, with numbers replaced by zeroes and chara

Nested or mixed
by spaces

Object or Class The NULL object

Reference
BH3" 4" 5 mrnmmmmm o x ppnpn"gngogpv"hgt"ukor ng

12300 R
A TFKURNC["7H) CDE) " """ """ "*hknn"gngogpVv"hqgt"ukor n¢
0 h--- . is blank)
|ABC |
A TDISPLAY VAR (nested array - vector of length 2)
0h .
~" O--FI-----: -------------- - 0" " oh|
~" ~"8-h0" " B&-h---—-- .| IABCJ |
~"~"H"3"C" ~"."4]'0h -
[11B2] 1112l 7] |
[+ =~ =
s =)0 |
=)4 o
) |
A TFKURNC[" 5HAXCT" " " " "typd used as trailing fill glement)
0h .
~" O--FI-----: ______________ - o""omm" " ok --- N
~"~"8-h0" " B&-h---—-- 0" ~""~CDE~+*"6" 0 B-h----- .
~"~"H"3" C" ~"." 4]'0h —)t~ HE"2" """~ " HT1 0N
[11B2] 112 7] [1 0] [100] O []]
L e T S R I}
= g) RIR
=~)) " - 4
) | '

APLX Language Manual 24

~ TFKURNC["1 B5AXCT" " """ """« tlegding fill flemeriywu g f " c u "
0 R .
~ " Oreees - 0" " Ohmmm - 0" " eh|
~" ~"9h0" " QR 0"~ ~2 0B " Oh .| |ABC| |
| ~"H" 2" ~mgEm g~~~ Y 3 CU R~ O-h
[I1 O [l00F O[] [IB2][|12] 7] |
TR R I R R O |
N R A i } T 1
)-F) "y |

APLX Language Manual 25

Display of arrays

Display of simple, numeric arrays

By default, nunmeric data is displayed with a space between each successive element of a vector (or
dimension in an array). Arrays are displayed in such a way that their structure should be apparent.
Vectors are displayed as a line of data. Matrices are displayed witlr@a of the matrix on

successive lines of the screen or printer. For arrays of higher rank, the display is by means of
successive matrices. Successive planes are separated by one blank line, successive blocks by two
blank lines and so on.

An empty vectodisplays as one blank line. Empty arrays of rank 2 or more are not displayed.

Display of simple, character arrays

These are displayed without spaces between elements on the row; other rules are the same as those ft
simple numeric arrays.

Display of simpe, mixed arrays

The rules described above apply to simple arrays which are all character or all numeric. Simple, mixed
arrays make use of the rule that a column which contains a number is always separated from adjacent
columns by at least one blank.

MAT (Simple, mixed array, note columns are
AB 45C separated by spaces)
D 999 F 1000
4"68) CDEFGHI J) "t nrmmmmm*xykor pgdlumfpsadtcevgt "cttc{
ABCD separated)

EFGH

Display of a class or object reference

By default, APLX displays an object reference as the unqualified class name contained in square
brackets. Class references are displayed as the class name in curly braces:

)JCLASSES
Queue 6 User - defined APL class
Queue
} Swgwg " trrrrmmrmmmmmmmmnn gt Eghecwnv"fkurnc{"gh"enc
SWGWG45§TPGY" Swgwg "
swewg4s5rnrrnmnnmnmm gt Eghecwnv"fkurnc{"qh" CRN" g«

[Queue]

You can changéhe default display for an object by using the system method.

APLX Language Manual 26

Display of nested arrays

The display of any nested array is preceded by a leading blank so that nested arrays will be indented
one space. It is also followed by a trailing blank.

S5 (Simple vector)
12345

* 8§54+ " *S44nnnnnmmmn e xpagyygf"xgevgt " kpfgpvgf
12312

The other rules for the display of nested arrays are:
1 At least one blank between columns with nunsber
1 No separation between columns with scalar characters
1 Numbers right justified on the decimal point
1 Character vectors (containing only scalars) left justified
1 Columns with text and numbers right justified

1 Other nested items displayed with leading anditigiblank for each level of nesting.
For example:

2 3 3'ABC' 100027 'NAME' 3 'DAT' 27
ABC 100027 NAME
3 DAT 27
5" 48)LQJP)")UOKVJI)")CTVJIWT)")LQPGU) ") YKNHTGF) ")
JOHN SMITH
ARTHUR JONES
WILFRED HART

APLX Language Manual 27

Vector Notation

If an expression contairme or more arrays, then the resultant vector will contain elements which are
those arrays. The way in which this type of expression is constructed is known as 'vector notation'.
Parentheses or quote characters are used to delimit arrays in vectonngigimatively, the

expression may contain variable names.

'ABC' 'DEF' (Two three element character vectors make
ABC DEF a two element nested vector)
(12 3) 'DEF (Three ele ment numeric and three element
123 DEF character vector make a two element nested
vector)
§12 3'DEF (Three numeric scalars and a three element
4 character vector make a four element vector)
§(1 2 3) 'DEF (The parentheses force the three numbers
2 to be treated as the first element of the

two element result)
§123'D''E''F (Each character is now treated as a scalar

6 giving a 6 element mixed result)
((12)(34)23 (First element of the vector is itself
123423 a nested vector - two two element numeric

xgevqtuO0O"Vjg"TFKURNC["hwpevkqgp"e
TDISPLAY ((1 2)(34))2 3

0h

S — -

~"~"0BG" "06h| 2 3|

[1112] [34]] I

=== =

=) S

) | '
Zg4am"48Ser oo golydnyngieticaateix) vy g
[) IGNNQ) " " nm s Hkxg"gngogpv"ejctcevgt
XY (Variables entered in vector form)

12 HELLO

34
§XY (Shape 2)

2

APLX Language Manual 28

Primitive Functions

Built-in APL functions (or ‘primitive’ functions) are denoted by symbols (sueh asx).

Primitive functions can be eitheronadic(which means they take a single right argumentjiyadic
(in which case they take an argument anléft and an argument on the right). The same symbol may
have both monadic and dyadic forms.

Execution order

A line of APL may consist of several functions, and arguments. All primitive anellefieed

functions have the same precedence, and simplynaitteodata on the right. Thus, expressions are
evaluated from right to left, and the result of one function becomes the (right) argument of the next
function. See the section on Binding strengths for more details.

Scalar and Mixed functions

APL's primitive(i.e. builtin) functions fall into two classeScalarandMixedfunctions. Scalar
functions are defined on scalar arguments, and extend to arrays of any rank on ar®festenent
basis. Mixed functions are defined on arrays, and may yield resulth ate different in shape or
rank from their arguments. Most of the arithmetic primitives (such as addition, multiplication,
logarithm) are scalar functions.

If one of the arguments to a dyadic function is a scalar, the scalar is applied to each diémeent o

other argument (a property knownszslar extension The other important property of scalar

functions is that they are pervasive, that is they apply at all levels of nesting. Monadic scalar functions
are applied independently to every simple scaldineir argument, and the result retains the structure

of the argument. Dyadic scalar functions are applied independently to corresponding pairs of simple
scalars in the other argument. If one of the arguments is a scalar, it will be applied to all simpl
elements of the other argument. For example:

2345+78910
9111315
23+78910
30313233
123)(22 §6"7"8"9+"*QO" 4" - "*32"33"34+"*4"4833"44"55" 6 ¢
111315 1527 6778
39 51
*3"4"5+"*4" 486" 7" 8" 9+" 9" +" - "3
234 56 89
78

Note that you can use the Each operatptd apply a norscalar function to each elemt of an array.

APLX Language Manual 29

Numbers or text

Some functions work on numbers only. The arithmetic functions are in this category. You will get a
message saying you've madBGVAIN ERRORf you try to use any of the arithmetic operators on text
data.

Some functions wdron either. Th& function, for example, can be used (with one argument) to find
how many characters are in a text item, or how many numbers are in a numeric itemaltgument
form (which you've seen used to shape data into a specified number of rows and coluonws)kals
on either numbers or characters.

The logical functions (logical, T and the rest of that family) work on a subset of the number domain.
They recognise two states only, true or false as represented by the numbeos If any other
numbers or caracters are submitted to thenD@VAIN ERROResUlts.

Arithmetic functions

Function Monadic form Dyadic form
+ Identity (ConjugatefScalar function Add (Scalar function)
- Negate(Scalar function) Subtract(Scalar function)
x Sign of(Scalar functim) Multiply (Scalar function)
+ ReciprocalScalar function) Divide (Scalar function)
L Ceiling (Scalar function) Greater of(Scalar function)
r Floor (Scalar function) Lesser of(Scalar function)

| Absolute valugScalar function) Residue (remainder) of divisiqi®calar function

(Note: the- minus sign represents the negate and sutftractions, the sign is used to identify
negative numbers.)

Examples of arithmetic functions

A vector of numbers is multiplied by a single number.

26319x05
131595

A vector of numbers is divided by a single number:

37811+3
1 2.333333333 2.666666667 3.666666667

A vector of numbers is divided by a single number. The results are rounded up to the next whole
number and are then displayed:

L 37811+3
1334

APLX Language Manual 30

The same operation as the last example, except.thas subtracted from each number before it's
rounded up in order to give 'true’ rounding:

L 05+37811+3
1234

Two vectors containing some negative values are asgds@pplied to the resulting vector to
establish the sign of each number. The final result is a vector in which each positive number is
represented by B each negative number by aand each zero bya

x127135+2 6 45
1110

The remainder of dividing 17 into 23 is displayed:

1723
6

The remainders of two division operations are compared and the smaller of the two is displayed as
final result:

317) I 4]11
1

Algebraic functions

Function Monadic form Dyadic form
S Index generator (see Comparative functions)
5 Roll (_Random number(Scalar Random deal
function)
* 'e' to powel(Scalar function) Power(Scalar function)

oe Natural Logarithm(Scalar furction) Log to the baséScalar function)

Circular & Hyperbolic functions (Sine, cosine, etc)

G pi times(Scalar function) (Scalar function)

Factorial or Gamma functiofBcalar
function)

3 Matrix inversion Matrix division

Binomial (Scalar function)

Examples of algebraic functions

The numbers 1 to 10 are put in a variable cafled

z"g" S32
12345678910

3 random numbers between 1 and 10, with no repetitions.

3?10
283

APLX Language Manual

The logarithm to the base 2 of 2 4 8.

4" " 4" 6"
123

Thenumber of combinations of 2 items which can be made from a population of 4 items.

214
6

Comparative functions

Function Dyadic form only
< Less thar(Scalar function)
j Less than or equéBcalar function)
= Equal(Scalar function)
J Greaterlhan or equaScalar function
> Greater tharfScalar function)
i Not equakScalar function)

I Match

1J Not Match

T Membership
S Index of

S Find

Examples of comparative functions

Are two given numbers equal? (1 = yes 0 = no)

10=5
0

12=12
1

Are the corresponding characters in two strings equal?

'ABC' = 'CBA'
010

Is the first number greater than the second?

10>5
1

Is each number in the first vector less than the corresponding number in the second vector?

396 <999
101

31

APLX Language Manual 32

Is the number on the left in the vector on the right?

127 61224
1

Is the character on the left in the string on the right?

yD)""T"")CDEFG)
1

Which numbers in a matrix are negative? (The contentagife are shown first so that you can see
what's going on.)

TABLE
1254 1
39023
16 9 2

TABLE <0
000
100
010

Find the number on the right in the vector on the left and show its position.

35"9":"28§;
3

Are two matrices exact matches?

*4" 48S6+"1""*4" 48856+
1

Find the patterrcAT' within the charactergHATCAT

'CAT) "s")VJCVECV")
0000100

Logical functions

Function Monadic form Dyadic form
~ Not (Scalar function See Selection functio
| Or (Scalar function)

A And (Scalar function)
S Nor (Scalar function)
$ Nand(Scalar function

Examples of logicaldnctions

Logical NOT:

~1110001
0001110

APLX Language Manual 33

The same data submitted to various logical functions:

3" 1 "2
1

170
0

3" s"2
0

3"§"2
1

Each element in one vector is compargedwith the corresponding element in another.

1017001
001

Two expressions are evaluated. If both are true (i.e. both return a value of 1) then the whole statement
is true (i.e. returns a value of 1):

(5>4)71<3
1

Manipulative and selection functions

Function Monadic form Dyadc form
8 Shape of Reshape
[Depth of an array (see comparative functions)

, Ravel (Convert array to vector) |Catenate (join) data items
| Enlist (Make into simple vector) (see comparative functions)

~ See logical functions Without (Removes elements from a \@&g
| Unique Union

f Intersection

N Reverse elements Rotate elements

n Transpose Transpose as specified

A First Take from an array

H Drop from an array

) Enclose an array Partition (Creates an array of vectors)
K Disclose an array Pick items froman array

I Index an array
L Stop (replace argument with emg Left (pass left argument)
K Pass (argument unchanged) Right (pass right argument)

Examples of manipulative functions

An enquiry about the size of a character string:

§ 'ARLINGTON A .J, 22 BOND RD SPE 32FE'

APLX Language Manual 34

33

A threerow four-column matrix is formed from the numbers 1 to 12 and is assigrzolzen!

FQ\GP" g"5"6"8§"S" 34
DOZEN
2
6
0

P~ W

4
8
1

© 01 -
=

112

The matrixpOzENS ravelled into a vector:

,DOZEN
1234 56789101112

The matrixpOZzENS first converted to vector form and is then catenated (joined) with the vector
13 14 15):

(,DOZEN), 13 14 15
DOZEN
1234567891011121314 15

The matrixpOzeNs reformed from the original data ireverse order:

+DOZENG " 5" 63 N. FQ\ GP
1211109
8765
4321

Numbers are removed from a vector:

123456~246
135

First 3 characters are selected from a vector:

5" H) CYHWNN])
AWF

Data array enclosed into a nested scalar, with an empty shape:

i::;;,"56
999 34

§ 7999 34
empty

Index the third item from a vector:

5"""3"4"5”6"7

APLX Language Manual 35

Sorting and coding functions

Function Monadic form Dyadic form
n Ascending sorted indices, default sort or Ascending sorted indices, specified sander
5 Descending sorted indices, default sort Descending sorted indices, specified sort
order order
i Encode (Convert to a new number systen
L Decode (Convert back to units)

Examples of sorting and coding functions

To put a vector of numbers ingscending order:

NKUV" §" 422" 76" 35" ;"77"322"36": 4
NLIST

43725861
LIST[4372586 1)

9 13 14 54 55 82 100 200

To sort the same vector as in example 1 with less typing:

NKUV] DNKUV _
913 14 54 55 82 100 200

To find how cerain symbols rank in the collating order (i.e. the order in which APL holds characters
internally):

U[ODU" §i"* 1)
QTFGT" §g" NU[ODU
SYMBS[ORDER]

EC\

To convert the hex number 21 to its decimal equivalent:

38"38"L"4"3
33

Formatting functions

Function Monadic form Dyadic form
o} Format Format by specification, Format by exarr

§ Picture format

Examples of formatting functions

To display each number in a vector in-at@aracter field with two decimal places:

8" 4" 0" 82051®35TG
60.33 19.00 2.00 52.78

APLX Language Manual 36

To display each number in a vector preceded by a dollar sign and with up to three leading zeroes
suppressed:

) &&\ .\ \ ;)" &"5:;:;:"88"4
$3,899 $66 $2

Miscellaneous functions and other symbols

Function
T Acceptnhumbers from keyboard or Output with new
& Accept characters from keyboard or Bare output
! Statement separator

Comment

Execute an APL expression

Empty numeric vector (Zilde)

~ S (@]

APLX Language Manual 37

Primitive Operators

An 'operator' modifies the behaviouraprimitive or usedefined function. It has an operand or

operands that are primitive, derived or udefined functions or data. The result of using an operator

is known as a derived function which can then be applied monadically or dyadically to data o
alternatively it may be, in turn, used as an argument to another operator. Operators can themselves be
monadic or dyadic. Monadic operators will be placed to the right of their operands:

+/ (Monadic / operator)
§” (Monadic " operator)
+.X (Dyadic . operator)

Operators form a powerful extension to the repertoire of the language. They can be used to specify the
way in which a function or functions are to bpplied to datathey allow a function to be applied
repeatedly and cumulatively over all the elements of a vector, matrix or multidimensional array.

The primitive operators available are:

OperatorName

/ Reduce or Compre
\ Scan or Expand
Inner Poduct
Outer Product
Each

[AXis

=
o

Reduce and scan

When used withliunctions as their operand, slash and backslash are known as reduce and scan.
Reduce and scan apply a single function to all the elements of an argument. For example, to add up a
vector ofarguments, you can either type:

22+93+46+10+3.3
132.9

or alternatively:

+/22 93 4.6 10 3.3
132.9

The/ operator in the last example had the effect of inserting a plus sign between all the elements in
the vector to its right.

The\ operator is similar except that it works cumulatively on the data, and gives all the intermediate
results. So:

APLX Language Manual 38

+\22934.6103.3
22 115119.6 129.6 132.9

from the results of;

22 (22+93) (115+4.6) (119.6+10) (129.6+3.3)

Compress and Expand

When used with one or momumbers as their operand, slash and backslash carry out operations
known as compress and expand.

Compress can be used to select all or part of an object, according to the value of the numbers forming
its operand. For example, to sel some characters from a vector:

101101/'ABCDEF
ACDF

Conversely, expand will insert fill data into objects:

TAB§" 4" 558858
TAB
123
456
10101 \[2]TAB
10203
40506

Columns are inserted in positions indicated byohegNote also the use of the axis operator).

Outer and inner products

The product operators allow APL functions to be applied/een all the elements in one argument
and all the elements in another.

This is an important extension because previously functions have only appi@dasponding
elements as in this example:

123+456
579

The outer product gives the resoftapplying the function tall combinations of the elements in the
two arguments. For example, to find the outer product of the two arguments used in the last example:

123 7.+456
567
678
789

The first row is the result of adding the first element on the left to every element on the right, the
second row is the result of adding the second element in the left to every element on the right and so
on till all combinatias are exhausted.

APLX Language Manual 39

This example works out a matrix of powers:

(Since the outer product involves operations between all elements, rather than just between
corresponding elements, it's not necessary for the arguments to conform in shape or size.)

The inner product allostwo functions to be applied to the arguments. The operations take place
between théast dimension of the left argument and first dimension of the right argument, hence
‘inner’ product since the two inner dimensions are used.

In the case of matriceByst each row of the left argument is applied to each column of the right
argument using the rightmost function of the inner product, then the leftmost function is applied to the
result, in a reductior § operation.

Given that you can use a combinatafrany two suitable functions, there are many possible inner
products. These can perform a variety of useful operations. Some of the more common uses are:

1 locating incidences of given character strings within textual data
1 evaluation of polynomials
1 matrix multiplication

1 product of powers

Each

As its name implies, the each operator will apply a function to each element of an array.

So, to find the lengths of an array of vectors

3 (123)(12)(12345)
325

As with other operators, each can bedufse userdefined functions. Here we use an 'average'
function on an array of vectors.

APLX Language Manual

AVERAGE 12 3
2

AVERAGE " (1 2 3) (4 5 6) (10 100 1000)
25370

40

APLX Language Manual 41

Axis Operator

A number of primitive functions and operators can be applied to a gartaxis (or dimension) of an
array. Thg] brackets are used to indicate the axis being specified.

The highest dimension of a data item is considered to be the first dimension and the lowest dimension
the last . Thus the first dimension of a matrix is tbws and the last dimension is the columns. In the
case of a thredimensional object, the first dimension is the planes followed by the rows and columns.

Axis numbers are governed by the Index Origim, Qand in Index Origin 1, (the default), the first
dimension is represented f1y, the second bfg] and so on. In Index Origin O the first dimension
would be[o], the second] and so on. The number used to represent the axis is always a whole
number, except for the ravel and laminate functions.

The pimitive functions and operators which will accept an axis operator include the dyadic forms of
the primitive scalar functions :
+ - ox+] LT, "t dr#r T s S st 2 it @ i

and some primitive mixed functions :

Sttt TexgnlEcvgpecvglNcokpecvgt Tttt "" " *pgqvg"hktuv"
N k Reverse/Rotate (note first axis variant)

e "GpenquglRctvkvkagp

K" " Disclose

H" " "Vcmg

2l "Ftaqr

I Index

as well as the operators:

i*p"""""""EqOrtguulTgrnkecvg""""""rrrmmm*xpqvg" hkt uv"
i*p"""t"""Tgf weg" """ttt pgqvg" hkt uv”
\' N Scan (note first axis variant)
\' N Expand (note first axis variant)

See the reference section entry for Agls for more details, as well as the reference entries for
individual mixed functiongnd operators listed above.

APLX Language Manual 42

Formatting

The default way in which APL displays results may not always suit your requirements. Obviously you
can do a certain amount by using functions like size to reshape data, or catenate to join data items, but
for mary applications you may want much more sophisticated facilities. You may, for example, want

to insert currency signs and spaces in numeric output, or produce a neatly formatted financial report,
or specify precisely the format in which numbers are displayed

APLX has a variety of functions for formatting data, providing flexibility as well as compatibility with
a number of other APL interpreters.

Formatting functions

There are three functions in APLX which all convert the format of data from numbers totehsra
and allow you to specify how the converted numeric data should be laid out.

The functions are:

1 TheOprimitive (Format, Format by specification, Format by example)
1 Thes primitive (Picture format)

T TheT H osystem function.

Each function lets you specify how many character positions a number should occupy when it is
displayed, and how many of thesesjtiions are available for decimal places. The number of characters
and number of decimal places are specified in the left argument:

8" 4" 0" 35630: 4; 43
341.83

(Note that since the number had to be truncated to fit the character positions allowsdirgtwa
rounded to make the truncated representation as accurate as possible.)

Picture format¥) and Format by Specificatio® (vith a character left argument) allow you to use
editing characters to define a 'picture' of how data should look when spisygled. The picture is the
left argument and the data the right.

The following example shows the values in-eo# 2-column matrix calledAB. It then shows the
function applied to this matrix and its effect oxB:

TAB
1096.2 ~416.556
296.974 1085.238
7811.188 844.074
~745.416 153.468

APLX Language Manual 43

) &&\ .\ \; O0,;;"FT""""""")"§"VCD
$1,096.20 $416.56 DR
$296.97 $1,085.24
$811.19 DR $844.07
$745.42 DR $153.47

T H otekkes the process a stage furtladigwing a variety of picture phrases, qualifiers and decorators
to be supplied as the format specification.

) D" M4" 1 >"\\; " FQNNCTU" CPF"; ; "EGPVU@) " THOV" : 045" 340: 8
8 DOLLARS AND 23 CENTS
12 DOLLARS AND 86 CENTS

2 DOLLARS AND 52 CENTS

APLX Language Manual 44

Names

The following rules apply to us@ssignedymbolsi.e. the names of variables, functions, operators,
classes and labels in APLX.

The first character of the name must be one of the alphabetic charaaters- z, or one of the
characterss or ©. Subsequent characters can also include dig&sunderbar and high minus.

Names consist of up to 30 characters (longer names will be truncated).

The following are all valid names in APLX:
FCVC" Z" Z3"HKTUVaXCNWG" G" GN3" Gttqt Eqfg, o gaG8qfgltguvect

Case is significant in names, BaTAData anddata are three distinct names.

There are no reserved names in APL. Sysasgigned names are distinct from uassigned names
because they start with a Quadymbol.

APLX Language Manual 45

Specification (Assignment)

The symboly associates the data on its right with the name specified on its left. The named data is
known as avariable The name associated with it is the variable name. Subsequent references to the
variable name automatically refer to the data assatiaith that name. This operation is known as
specificationor assignment

PWOg n 4 6 L L T T [[T L T [[U [T I T [N [N [I L T N TN [B3 u e C n Ct " 4 6 n k u n C u u k
F G U E T P g) K V G O n 4 6 3 C) L T T T T [T T TR T I TR u k or n g " e J c t cev g t n
RTKEGUg" 4056 " ; 05 2 "(3uhéri@vadobis assigned to PRICES)

F C V Cg 3 ") C) n 4 n) F) L L T T O T [O I L A LI [[B] "% O k Z g f n X g e Vv q t n C u u k

When entering character data, care must be exercised if the quote character is to be included in the
data. As stated above, adjacent quotek® are evaluated as indicating the quote character in the data.
A vector containing only characters can be entered in one of two-whgscharacters can either be
entered within one set of quote marks or the characters must be separated by spatsesttgee

section on Vector Notation.

ALFg) C)")YD) ")E)")YF)"""""*fcvc"ku"c"ugv"gh"ejctce
ALF

ABCD
CNHg) CDEF) """ mnnrmmmnvmm s cnygtpecvkxg"ogvjgf"qgh"
ALF

ABCD
CNHg)C))D))E))F) """ """*pg"urceg"dgvyggp"ejctc
ALF

A'B'C'D

The right argument t§ can be any APL expression that generates a result:

EQUV g3 2 (The result of evaluating an
COST expression is assigned to
43 COST)
RTQHKVg* RTKE G § EEQUMO3330242+
PROFIT (right to left execution ensures
20 that the value assigned to

COST is used in the expression
inside parentheses.)

Variables which are either scalars or vectors can be entered directly, as shown above. Matrices or
higher dimensional arrays must be established or emt&ddnctions (see for exampde. reshape’).

vCcbg4"58s8g"rrrrr o nmnnnmnnn v g are\ajrapdegpas®d d gt u " 3"
rows of 3 columns and are assigned
to TAB)

APLX Language Manual 46

Multiple specification

It is possible to make multiple simultaneous assignments by enclosing a list of variable names in
parentheses on the left of an assignment arrow.

*C"D"E+¢"3"4"5

A
1

B
2

C
3

A scalar to tle right of the assignment arrow will be assigned to every item on the left. This is known
as 'scalar extension'.

*C" D" E+§7

A
5
B
5
Cc
5
*C"D"E+g")JK)")VIGTG) ") HQNMU)
SA (A assigned 'HI' and so on)
2
*C"D"E+¢g])JK)")VIGTG) ") HQNMU)
SA (A, B and C assigned the enclosed vector
3 to the right of the assignm ent arrow)
Caution:

Do not omit the parentheses if you are trying to do multiple specification, as in:
C"D"Eg7

This expression will assign the value 5 to C and then attempt to evaluate the resultant expression. See
also the discussion of lding strengths.

APLX Language Manual 47

Selective specification

A number of APL functions can be used to select elements or portions of an array. These selection
operations can also be used as specifications when enclosed in parentheses and used as the left
argument to the aggnment symbol. The array being selected must appear as the rightmost name
within the parentheses. The following functions can be used to make the selection, either singly or in
combinations.

MonadicT A, Nnk
DyadicHHKS Nnk |

and the functions (‘expand’) and (‘compress’, replicate’).

Bracket indexing can also be used as the left argument to the assignment arrow although in this case it
iS not necessary to enclose the indexing expressiparentheses.

Some examples will illustrate.

First, bracket indexing:

vcbg4"s58sgmnrnrmrmnmmnm ke ygkorng"ocvt kz+
vCcD] 4=3_g¢g: """ rnnmmnnmmnxTgy" 4" eqgnwop”" 3" cuukipg

Nearly all the selection functions listed above opevatéhe outermost structure of a nested array. The
shape of the right argument to the assignment arrow must either match that of the selected elements ol
be a scalar in which case scalar extension applies.

XGEgS7
*5HXGE+¢§) CDE) " "(First three elements become 'ABC")
VEC
ABC 45
*5AXGE+g)Cc)y """ nnrmrnmm e x Ctyecncet"tkijv'ctiwogp
VEC all items specified)
AAA 45
OCV{g5" 65) CDELF GSihple character matrix)
*, OCV+yg)PGY"FCVCJGTG) "t *Texgn"wugf"hqgt"ugngevk
ocvy" " e wugf"cu"tkijvtcectiwogpyv
NEW
DATA
HERE
**)C)?. OCV+1. OCV+g) , iprof compesgsmrdakndgravel
MAT used for selection)
NEW
D*T*
HERE
* 4" AHOCV+g) TTTT)"""""""*Eqodkpcvkgp"qh"H"cpf"
MAT selection)
Tw
T

HERE

APLX Language Manual 48

VCDNGg5" 68S34

TABLE

1234

5678

91011 12
*3"2"3"21VCDNG+3§5"48322" *Eqortguukgp"wugf"hqgt"u
TABLE

100 2100 4

100 6100 8

100 10 100 12 .
FCVCgS35

zg32"42 52 nnnnnnnmnnnwmws gyjgt" CRN" hhwpevkgpu"oc
**§Z+HFCVC+gzZ """ "t yjgtgtsybu] wugLtvg"uwr
FcCvc " mrmmnmm ey g"npghv"ctiwogpv"vg"H
10203045678910111213
[gS32
Z§5
** 4. Z+HA[+gNSZz-4 v m s Nghv"ctiwogpv"vg"H"kpe
Y
54321678910
The function enlist T femoves all nesting from amray. When used with selective specification, it
can be used to replace elements at the deepest level of nesting, whilst retaiaimg rthatryiduse.
PGUVg*4"458S6+")VGZV)"*5"38S5+
NEST
12 TEXT 1
34 2
3
*TPGUV+g2"""mmrnmmmnmmm vy Gopyktg"cttef{"ugv"vag"2.
NEST structure retained)
00 0000 O
00 0
0
*81T PGB+ g (Single element at bottom of nested array
NEST array altered)
00 099900 O
00 0
0
*9FTPGUV+g])VGzZy) "mmmmmmmmmmmm s wt vjgt"pguvkpi "kpv:
NEST
00 0999 TEXTO O
00 0
0

The function first: A +selects the whole array which is the first element in an array. If first is used
purely to select the first array within a nested array, then the arrak vgtthe right argument to the
assignment arrow will replace the selected array.

*HPGUV+g) CDE) "" """ """ *Hktuv"gngogpv"gh"PGUV"
NEST shape 2 by 2. This is replaced by
ABC 0999 TEXTO 0 a length 3 vector)
0
A 0
*4] HPGUV+g) T) " """ Qpg"gngogpv"ykvjkp"vijag
NEST NEST is replaced)
ctTe""2",;,;;"vexv"2"""
0

0

APLX Language Manual 49

Pick* K will select an entire array at an arbitrary depth in a nested array, and will also replace that
entire array by the right argument to the specification symbol.

4" 4 KPGUV

999
*4" 4KPGUV+gS32 " nmrmmnm s pgytcttcec{"rncegf"kp"4"
NEST
cCTe""2""3"4"5"6"7"8"9Q":";"32""vGzZzv"2""""2
0
0
*4KPGUV+¢g) FCcvc) """ xpgyvgf"xgevgt"cv'"gngog
NEST length 4 vector)
CTE"FCvC"" "2
0
0
5" 4" 3+KPGUV+g3222"""""*Tqgy"4"eqnwop"3"gh"gngo
NEST specified)
CTE"FCvC""""""2
1000
0

There are some exceptions and restrictions to the rules for selective specification:
- Userdefined functions and operators cannotibed within selective specification
- Executer n is not allowed within selective specification

- System functions are allowed within selective specification with the exception of those which use
executer T GandT GE +

- The selection expression must sekdeiments from the variable and not insert fill items (as, for
example, can be done by expand and replicate).

- No arithmetic operations can be carried out on the array being specified or on the elements selected
- Assignments are not allowed within theg@@theses used for selective specification.
- Selective and multiple specification operations cannot be mixed.

Thus, if
Xg5" 6" 7

then the following expressions are not allowed:

*CXGTCI G"Z+¢g8g" " ™" définediurgtiom) h " wu gt
**n)3-4)+HZ+§g)CDE)""""""*Wug"qh"gzgewvg+
**[gd4+HZ+g)C)""rnrrrmnmmx Cuuki pogpv"yksignkp"vijg"
**4HZ+"["\V+g§g)CDE)"""""""*Okzvwtg"qgh"ownvkrng"cp

specifications)

APLX Language Manual 50

*32HZ+¢gS832 "y Hknppn"kvgou" kpugtvgf"d{
expression)

As stated above, arithmetic may not be carried out on the elements of an array that are selected:

zgS7
*4-3HZ+g7
DOMAIN ERROR
*4-3HZ+g7

N

but other expressions within the specification parenthesesisgagrithmetic operations, even on
another instance of the name being specified:

** 4. 3HZ+HZ+§322
X
100 100 100 4 5

APLX Language Manual 51

Binding strengths

In simple terms, APL evaluates expressions ftgHeft, that is to say the resulf the rightmost
function is evaluated, and becomes the right argument of the next function. There are no 'precedence
rules' to remember; all primitive and usifined functions have the same precedence. For example:

78504034E6
9.69.69.69.69.6

In this example, the divisiare+4 is evaluated first. The result of this expression becomes the right
argument of the multiply, which returns the scalar resalt This in turn becomes the right argument
of the reshapes] function.

The right to left funtion execution rule needs to be modified to cope with more complex expressions,
for example nested vectors or certain expressions containing operators. The 'binding strength' defines
how certain symbols 'bind’ for evaluation. The order of binding streiggiown below, in

descending order. (Note that binding strengths can be altered Dythad)cs (‘compatibility

setting’) commands.)

Binding Bound items

Bracketq] Brackets to object to the left
Specificationg left |g to object on its left

Right Operand Dyadic operator to its right opera

Vector Array to array
Left Operand Operabr to its left operand
Left Argument Function to left argument

Right Argument [Function to right argument
Specificationg right ¢ to object on its right

Parentheses can override the binding strength hierarchy. Some examples include:

Cg) FGH (Set up variables A B)
Dg) Z[\)
AB
DEF XYZ
A B[2] ([] has higher binding than vector so the
DEFY result includes the second element of B)
(A B)[2] (Parentheses force selection of B)
XYZ
c"Dgs" kg cyuytuvtgpigt"dkpfkpi
DEF 3
*C"D+gbH"nrrrrnnnmmm s Rectgpvjgugu"cnvgt"dkpf
A
3
B

APLX Language Manual 52

123+456 (Vector has stronger binding than function)
579

12(3+4)56 (Parentheses alter binding)
12756

10 1/ABC' (Vector has stronge r binding than left
AC operand, so left operand is 1 0 1)

+H[2]22 § & (Axis brackets have stronger binding than
37 operator to operands, so /[2] operator

is formed

Finally, the relative binding strengths of left and right operands caisdxto predict the result of
expressions with multiple operato#sx. - is evaluated ag.x). - and not as.(x. -) since thex
binds first as right operand to the first . (‘inner product’) operator.

APLX Language Manual 53

Bracket indexing

Bracket indexing can be used tdes# elements from an array, for example one or more elements from
a vector, or individual rows or columns of a matrix.

The index or indices are enclosed in square brackets, each dimension being separated by a semicolon.
If no number is used for a partianldimension, then all the elements in that dimension are selected.

APL allows index references to start either at 0 or 1. The index origin (which is controfied Qy

JORIGIN) determines whether index positions start from 1 or 0. In the examples lbald\wgenerally
throughout this manual, the default convention of index origin 1 is used.

NKUVg34" 46" 58" 6:

LIST[2] (Selects the second item in LIST)
24

LIST[1]+LIST[4] (Adds the first an d fourth items in LIST)
60

CNHg) CDEFGHI JKLMNOPQRSTUVWXYZI[\)

ALF[26 113291] (Selects the letters in ZAMBIA
ZAMBIA from the contents of ALF)

TABLE (TABL E consists of 2 rows and 4 columns)
10203040
50 60 70 80

TABLE[1;4] (Selects the item in row 1, column 4)

40

TABLE[1;1 2 3 4]+TABLE[2;1 2 3 4]
60 80 100 120 (Adds the 4 columns in row 1 to the
4 columns in row 2)

TABLE[1;]+TABLE[2;] (Shorthand way of doing the same
60 80 100 120 operation as in the last example)

In general, the indices may béany shape or rank, so long as each of their elements correspond to
valid elements within the array being indexed. The shape of the result of an indexing operation is
generated by the shape of the index arrays. Thus

STABLEJ[A;B] (Where A and B are arrays)

is identical to
*§C+. 8D

This has the important consequence, that if all the indexing arrays are in fact scalars, the result is also
a scalar. Similarly, any axis of an array indexed by a scalar generates aresudt that axis does
not exist.

C N H] 4 n 4 é S 6 _ n n n n n " n n n n n n n * C N H n k p f g Z g f n d { n C n O C V t k
AB (Result is a matrix)
CD

APLX Language Manual 54
S§TABLE[1;1 2 3 4] (Rows indexed by a scalar, result is
4 a vector)

S§TABLE[,1;1234] (Rows indexed by a vector, result is
14 a matrix)

SVCDNG] 3"38§3=3"4"5"6_"""*Tgyu"kpfgzgf"d{"c"ocvtl
114 result is a three dimensional array

Thet ('index’) function

An alternative to bracket indexing is th€'index’) function, which is discussed fully in the reference
section. The index specification is given as the left argument tofthection and iquivalent to
bracket indexing in that

TQY" EQN" I " OCVTKZ

and

MATRIX[ROW;COL]

are equivalent. Although arguably less readable than bracket indexing, the index function has the
advantage that it is syntactically consistent witeotAPL primitive functions, and can thus be used
with operators such as Each.

APLX Language Manual 55

User-defined Functions

Userdefined functions are the equivalent of subroutines or functions in other programming languages.
They associate a series of lines of APL codéwihame chosen by the programmer.

When a function is evaluated, it performs some action on data known as an 'argument’. Functions may
have no arguments, one argument, or two arguments. These three types of functions are often referred
to as follows:

0 arguments Niladic
1 argument Monadic Argument on right
2 arguments Dyadic Arguments on left and right

If you defined a function called. saspwhich found the stadard deviation of a set of numbers, you
could write it so that it expected the data as its #iginid argument. You would then cathin exactly
the same way as a primitive function such as

Z"g"UF"45”:;"78"34";;"4"38";4

A function may or may not return a result.

You specify the number of arguments the function is to have, and the name of the result field (if there
is one) when you define the function header of the function youbang & write.

Header line for userdefined functions

In addition to the names used for the left and right arguments and result (if applicable) which will all
be 'local’, the header line may also be used to localize other variables (and system vasabledbis
function names. Whilst the function or operator is running, these local variables 'shadow' global
variables of the same name, that is they will exclude from use a global object of the same name.
System commands continue to reference the glalfjatts. Local variables (and functions) are
however themselves global to functions called within their function or operator.

The general format for a function header is:

Tg" C" HWPEVKQP" D=XCT3=XCT14
or
A FUNCTION B;VAR1;VAR2

depending on whether or not a result is returned. R, the result, A, the left argument, B, the right
argument are all optional. Local names, if any, are listed after the function name and arguments,
separated from them and each other by sagtons (;), VAR1 ad VAR2 above. Comments may also
appear at the end of the header line, followirdg(aomment’) symbol.

APLX Language Manual 56

Editing functions

In most versions of APLX, there are two ways to create or edit a function.

The most commonly used way is to useparscreen editor which allows you to edit the function
text very easily in an editor window. The tliis either invoked through the application’s Edit menu,
or with the)EDIT system command (or theG F system function), e.g.

)EDIT FUNK

For backward compatibility with old APL systems, APLX also supports a primitivealiagime

editor calledhe Del (or Line) Editor. To enter definition mode and create a new function yot type
(Del) followed by the function name. If you type nothing else, you are defining a function that will
take no arguments:

h HWP M

For clarity, we will list functiondere as though they were entered using the Del editor, wihere a
character is used to mark the start and end of the function listing. If you are usingsttreeameditor,
you do not typethen characters or the line numbers.

The function header

The fird line of a function is called the function header. This example is the header for a function
calledFUNK

h HWP M

If you want the function you are defining to have arguments you must put them in the header by
typing a suitable function header:

hUF" Z

The above header specifies tBatwill take one argument. Here is wigtt might look like when you
had defined it:

hUF" Z
]3_"UWO" §"-12
]4_"CX" §" UWOES Z
] 5_"FKHH"X§" CX
] 6 _"USFKHH" §" FKHH, 4
] 7 _"USCX"§"*-1USFKHH+ESUSFKHH
] 8_ " T GUWSRAV*.5
h

It's quite unimportant what the statements in the function are doing. The point to notice is that they use
the variablex named in the function header. Wha&mis run, the numbers typed as its rigiand
argument will be put intax and wil be the data to the statements thatxigethe function. So if you

type:

SD 12 45 20 68 92 108

APLX Language Manual 57

those numbers are putxnEven if you type the name of a variable instead of the numbers themselves,
the numbers in the variable will be put into

The function header for a dyadic (tvaogument) function would be defined on the same lines:

hZ" ECNE" [

When you subsequently usaLCcyou can supply two arguments:

147CALC0923

WhencALcCis run the left argument will be put inxoand the right argument into

If you want the result of a function to be put into a specified variable cgn arrange that in the
function header too:

h\"g"Z"ECNE" |

In practice, most APL functions return a result, which can then be used in expressions for further
calculations, or stored in variables.

Defining z to be the result ot CALC Y allows theoutcome ofcALCto be either assigned to a variable,
or passed as a right argument to another (possiblyde$iered) function, or simply displayed, by not
making any assignment. The variahklacts as a kind of surrogate for the final result during ex@tu
of CALC

Local and global variables

Variable names quoted in the header of a functiooaad. They exist only while the function is
running and it doesn't matter if they duplicate the names of other variables in the workspace.

The other variablesthose used in the body of a function but not quoted in the header, or those created
in calculator mode are calledylobal variables.

In thesbexample abovex was named in the header@ a local variable. If anotheralready exists
in the workspacethere will be no problem. Whespis called, thex local tosbwill be set up and will
be the one used. The othewill take second place till the function has been execusedl of course,
its value won't be affected by anything done to the Igc@he process whereby a local name
overrides a global name is known as 'shadowing'.

It is obviously convenient to use local variables in a function. It means that if you decide to make use
of a function written some time before, you do not have to worry aheutariable names it uses
duplicating names already in the workspace.

But to go back to thebexample. Only is quoted in the header, so oxlys local. It uses a number
of other variables, including one callsdwm If you already had a variable callsumin the workspace,
runningsbwould change its value.

APLX Language Manual 58

You can 'localize' any variable used in a function by putting a semicolon at the end of the function
header and typing the variable name after it:

hUF" Z=UWO

You may wonder what happens ifctions that call each other use duplicate local variable names.
You can think of the functions as forming a stack with the one currently running at the top, the one
that called it next down, and so on. A reference to a local variable name appliesanahlewsed by
the function currently at the top of the stack.

Comments in functions
If you want to include comments in a function, simply enter them, preceded by a coénsyentiol.

hT" g" CX" Z
]3_" ”IIijulth
4 _ 9

] 6 h"uqog" pwodgtu
T g"*-12Z2+

Mo

q
"7
h

There are two comments in the example above. Note that the one on line 2 doesn't start at the
beginning of a line.

Locked functions

It is possible tdock a function. A locked function can only be run. You can not edit it or list the
statements it consists of. To lock a function, edit it in the Del editor but tgpather than & to enter
or leave function definition mode.

A locked function cannot be unlocked.

Localized functions

Local functions cannot be edited by the standaeditor, and thé editor will always refer to a global
function of the same name (if it exist$)E may be used to examine local functions.

Ambivalent functions

All dyadic functions may be used monadically. If used monadically, the left argument is undefined
(i.e. has a Name Classificationp ©f 0). This type of function is known as ambivalentor nomadic
function, and will usually start by tesg for the existence of the left argument.

hTgC" PQOCFKE" D
]3_"<Kh"2?2TPE")C)"""""""" 8" FQGU" C" GZKUVA
4 """t Ccgy7rnrrrrrnnmmmnnnnn g pQ. " UQ" YG"IJCXG" DGGP" WUGF
[3] :EndIf
erc.

APLX Language Manual 59

User-defined Operators

An ‘operator' modifies the behaviour of a primitive or udefined function. It has an operand or
operands that are primitive, derived or udefined functions or data. The result of using an operator
is known as aerived functiorwhich can then be apptienonadically or dyadically to data or
alternatively it may be, in turn, used as an argument to another operator.

As well as the primitive (buHin) operators, usedefined operators are permitted. These are created an
edited in the same way as usifined functions (using thie editor, or)EDIT), but are distinguished
from functions by the format of the header, line O.

Header line for userdefined operators

The format for an operator header follows one of the following forms, wiosteeft operand,
RO=Right operanda=Left argumentB=Right argument:

Tg* NQ" QRGTCVQT+" D" """ *0Oqpcfke"qrgtcvqgt"yk
> TgC" * NQ" QRGTCVQT+"D""""""""*Oqpcfke"qrgtcvqgt"yk
> Tg* NQ" QRGTCVQT" TQ+" Dc"oferatorwith"ofierafguntent)

! TGgC" * NQ" QRGTCVQT"TQ+"D"""""*F{cfke"qgqrgtcvgt"ykyv

Userdefined operators need not return explicit results.

Example

This simple monadic operator with two argumetta/MUTEeverses the argumentsafunction. In

this exampleFN represents the function (the left operand) which will be combined with the operator to

make aderived functiopnL represents the left argument supplied to the derived functiorR and
represents the right argument supptiedhe derived function:

h\ gN"*HP" EQOOWVG+" T

]3_""6"Qrgtcvgt"yjkej"tgxgtugu"vjg"ctiwogpvu"vg"c"f{cfk
]4_"""\gT"HP"N
ﬁllll
100 + 3
33.33333333 _ 5
322" E" EQOOWVG"G5"""""""§d" Gswkxcngpv"vg"5"E" 322
0.03
322"§"EQOOWVYG"S5" """ """§d" Gswkxcngpv"vg"5"§"322
100 100 100
322" TFT" EQOOWVG"3""""" 6" Gswkxcngpv"vqgq"3"TFT"322

00000O0OOOOOOOOOOOOOOOOOOOO1100100

APLX Language Manual 60

Using data as operands

The left and/or right operands to a udefined operator do not have to be functions; they can

alternatiely be arrays. The effect is to substitute the supplied array for in expression which references
the operand:

'FRUIT' ('OLD' COMMUTE) 'HELLO'
HELLO OLD FRUIT

APLX Language Manual 61

Classes and Objects

Overview of Classes and Objects

As well as traditional APL functies and operators, APLX adds objectented programming facilities

to the core APL language. These facilities are broadly similar to those implemented in other object
oriented programming languages (such as C++, C#, Java, or Ruby), but with the diffleatAdel's
arrayprogramming approach applies to classes and objects in the same way as it applies to ordinary
data.

The fundamental building block for objeatiented programming in APLX Version 4 is tblass For
example, in a commercial invoicing apgation, a given class might represent the attributes and
behavior of an Invoice, and another class might represent a CreditNote. In an application concerned
with geometry, a class might represent a Sphere, or a Rectangle, or a Polygon. A class contains
definitions both for program logic (functions and operators, known collectively anétteodf the

class), and for data (named variables associated with the class, knpmepeies. The term

memberss used to describe both the properties and methicalslass.

In most cases, when you come to use a class, you need to craeetiauaceof that class, also known
as anobject Whereas the class represents an abstraction of (say) an Invoice, or a Sphere, or a
Rectangle, an object represents a particakasice, sphere or rectangle. Typically, you may have
many instances of a given class, each containing independent copies of data (properties), but all
supporting the same program logic (methods).

Inheritance

When you define a class, you can specify thiawhierits from another class. The new class is said to

be thechild, and the class it inherits from is tharentor baseclass. Inheritance means that (unless

you explicitly change their definition), all of the properties and methods defined in the glassnare

also available in the child class. This works for further levels of inheritance as well, so that methods
and properties can be inherited from the immediate parent, or from the parent's parent, and so on. The
termsderived classesr descendantare sometimes used to denote the children of a class, and the
children's children, and so on. Similarly, the teantestorf a class is used to denote the parent,

parent's parent, and so on.

For example, you might have a class Shape, representing eacagebmetric shape. This might have
properties called 'X' and "Y' giving the center point of the shape, and methods called 'Move' and 'Area’.

A Circle class might inherit from Shape, introducing further properties such as 'radius'. Equally, a
class Polygn might also inherit from Shape, and further classes Triangle and Square inherit from
Polygon. All of the classes Circle, Polygon, Triangle and Square are derived from Shape. Because of
the way inheritance works, they would all include the propertiesdXyarand the methods Move and
Area.

APLX Language Manual 62

When a class inherits from another, you can specify that the definition of a given method of the parent
(or the initial value of a property) is different in the child class. In our example, you would need to
supply a diferent definition of the Area method for a Circle and a Square. This is knooweasling

the method.

For classes defined in APLX, all methods can be overridden, and all methad$uade that is to say

if method A in a base class calls another metBpand the second method B is overridden in a child
class, then running method A in the child class will cause the overridden version of B to be called, not
the version of B defined in the parent.

APLX uses an inheritance model knownsaggle inheritane. This means that a child class can be
derived from only one parent (which may itself derive from another class, and so on). However,
APLX also allows you to 'mbmn’' one or more other classes (including external classes, such as those
written in .Net orJava) into your objects at runtime. This is a very flexible feature which can be used
in much the same way as multiple inheritance is used in some other languages. See the section on
Mixins for more details.

User-defined, System and External classes

APLX supports the following types of class:
1 Userdefined classes, written in APL (also known as ‘Internal’ or just 'APL' classes)

1 System classes, which are burnitto the APLX interpreter in the same way as System
functions. System classes are currently usathiy for userinterface programming, and
replace the older Y syntax.

1 External classes, written in other languages, such as Java or C#.

Object References and Class References

When you create an object, i.e. an instance of a class (using the systeonfrmrctias described

below), the explicit result that is returned is not the object itself, befeaenceo the object. This

reference is held internally as just a number, an index into a table of objects which APLX maintains in
the workspace. If you agjn the reference to another variable, the object itself is not copied; instead,
you have two references to the same object.

Of course, because APLX is an array language, you can have arrays of object references, and you can
embed object references in tegbarrays along with other data. For example, you might have an array
containing references to hundreds of Rectangle objects.

You can also have a reference to a Class. This makes it possible for general functions to act on classes
without knowing in advace which class applies.

Creating objects (instances of classes)

The system functiom P Gis the principal means by which you create an object, i.e. an instance of a
class. The class can be either written in APL (an internal ordefered class), or a Htiin System
class, or a class written in an external environment such as .Net, Java or Ruby (an exterrmabPotasgs).

APLX Language Manual 63

creates a new instance of the class, runs any constructor defined for the class, and returns a reference
to the new object as its explicesult.

The class is specified as the right argument (or first element of the right argument). It can be specified
either as a class reference, or as a class name (i.e. a character vector). Any parameters to be passed t
the constructor of the class (theethod which is run automatically when a class is created) follow the
class name or reference.

If you specify the class by name, you also need to identify in the left argument the environment where
the class exists, unless it is internal.

Creating instances of internal (userdefined) classes

Normally, you create an instance of a udefined class by passing the class reference directly as the
right argument (or first element of the right argument). For example, if you have a class called Invoice,
you cancreate an instance of it by entering:

I gTPGY" Kpxqgkeg

What is really happening here is that the symbol Invoice refers to the class definition, and when it is
used in this way, it returns a reference to the class.

Note that you can also pass the class name rather than a class reference.Wing fnéoalternative
ways of creating an instance of a udefined class:

KgTPGY") Kpxgkeg)
Kg)crn)"TPGY") Kpxgkeg)

Passing arguments to the constructor

A constructor is a special method of a class, which is run automatically when the ctassdad using

T P G#@nd is used to initialize the class. For APL classes, the constructor is a method whose name is
the same as the name of the class. It should be a function which takes a right argument, and does not
return a result. (It can be a methotdigh takes no argument, if you are sure that no parameters will

ever be passed to it viaP §.YAny arguments to the constructor can be provided as extra elements on
the right argument of P G When the constructor is run, these extra elements are pastedraght
argument to the constructor. If there are no extra elements, an empty vector is passed as the right
argument to the constructor.

For example, suppose the class Invoice looks like this:

Invoice {
TimeStamp
Account
InvNumber
} Ugtkcng?2

hKpxgkeg"D
6 Constructor for class Invoice. B is the account number
CeeqwpvgD
VkogUvcorgTVvu

APLX Language Manual 64

UgtkcngUgt kc
KpxPwodgt gUg
h
}

This is a class which has a constructor and four properties. One of the properties (Serial)-s a class
wide propety, which means it has only a single value shared between all instances of the class. When
a new instance of this class is created, the constructor will be run. It will store the account number
(passed as an argumentrte Q ¥n the property Account, andose the current time stamp in the

property TimeStamp. It will then increment the clasde property Serial (common to all instances of

this class), and store the result in the property InvNumber. (To see the properties, we use the system
methodT F which summarizes the property values):

UgTPGY" Kpxqgqkeg" 45755
UOTFU
Account=23533, TimeStamp=2007 10 11 15 47 34 848, InvNumber=1
VgTPGY"Kpxgkeg" 89766
VOTFU
Account=67544, TimeStamp=2007 10 11 15 48 11 773, InvNumber=2

Default display of a class or object reference

When you call thg P Gsystem function to create an object (an instance of a class), the explicit result
is a reference to that object. The question therefore arises: what happens if you display such an object
reference?

By default, APLX displays an object reference as the unqualified class name contained in square
brackets. Class references are displayed as the class name in curly braces:

)CLASSES
Swgwg®" """t fefined APL ofassWu g t
Queue
{Queue} 6 Default display of class reference
SWGWG45¢gTPGY" Swgwg"
S WG WG4 5 n n n n n n n " " n n n n 6 n F g h C Wn V n f k u r n C { n q h n C R N n q d | g e V |

[Queue]

However, if the APL programmer wishes to override the default display form of an object, this can
easly be done by using theF gystem method (see the section on system methods below):

SWGWG450TFH") Ej gemgwv" Swgwg45)

QUEUE23
Checkout Queue23

Object references and object lifetimes

When you usg P Gtg create a new object, that object persisil there are no more references to it

in the workspace. It is then deleted immediately, if it is an internal or system object. If it is an external
object, such as an instance of a .Net class, the fact that there are no more references to it in the APL
workspace means that it available for deletion by the external environment (unless the external
environment itself has further references to the same object). However, in typical external
environments such as .Net, Java and Ruby, the actual deletianaifjdtt may not occur until later.

APLX Language Manual 65

Consider this sequence, where we create an instance of a class called Philosopher which has a proper
Name:

j

CgTPGY"Rj knqugrijgt
uvqgqvng)

COPcogg) Ct k

At this point, we have created a new instance of the dasswe have a single reference to it, in the
variable A. We now copy the reference (not the object itself) to a variable B:

DgC
B.Name
Aristotle

We now have two references to the same object. So if we change a property of the object, éhe chang
is visible through either refereneé¢hey refer to the same thing:

DOPcogg) Ugetcvgu)
A.Name
Socrates

Now we erase one of the references:

)ERASE A

We still have a second reference to the object. The object will persist until wettelést reference
to it:

B.Name
Socrates
JERASE B

At this point, there are no more references to the object left in the workspace, and the object itself is
deleted.

It follows from this that, if you usg P Gte create an object, and do nes@n the result to a variable,

it will immediately be deleted again. In this example, we create an instance of the class Philosopher.
The explicit result off P Gi§ a temporary workspace entry (of type object reference), which is
displayed using the defldisplay format for objects, and then deleted. At that point the object itself

is also deleted, as there are no references left:

TNEW Philosopher
[Philosopher]

The Null object

As its name implies, the Null object is a special case of an objeahwhs no properties and no
methods of its own (although System methods may apply to it). A reference to the Null object displays
in the special form:

[NULL OBJECT]

A reference to the Null object can arise for a number of different reasons:

APLX Language Manual 66

1 If you have ararray of object references, the prototype of the array is a reference to the Null
object. For example:

VEQQ TPGY" ATgevcping"Urjgtg"Vtkcping
VEC
[Rectangle] [Sphere] [Triangle]
SH5HXGE
[NULL OBJECT]

T An external call may return a Null object, for example if you are looping through a linked list
of objects and reach the last one.

= =4 -4 -89

1 An APLX System methodhay return a Null object, for example if you ask for the parent class
of a toplevel class:

= =9

RqkpvOTRCTGPYV
[NULL OBJECT]

1 Your application code can deliberately set an object reference to Null (by caking) for
example to indicate that it has ny@t been initialized.

1 APLX may be forced to set an object reference to Null, because it is no longer valid. For
example, this will happen if yol$AVE a workspace which contains a reference to an external
object (e.g. a Java or .NET object). OAgadingthe workspace at a later date, the object
reference is no longer valid since the external object no longer exists.

Types of Property

When you define a class, you specify the names of the properties of that class, which can be used to
hold data associatedith the class. You can optionally specify a default value for the property, that is
the value which the property will have in a newhgated instance of the class. You can also specify
that the property is reaohly, which means it is not possible toigssa new value to it.

Most properties armstance propertiesvhich means that each instance of the class has a separate
copy of the property (for example, the X and Y position of a Shape). Occasionally, however, it is
useful to define alasswide propety (known in some other languages adatic or sharedproperty).

This is a property where there is a single copy of the data, shared between all instances. This is useful
for cases such as keeping a unigue incrementing serial number (the next involee,rfar example).

Combining these concepts, you have the following main types of property:
1 Areadwrite instance property, with a default value specified in the class definition
1 A readwrite instance property, with no default value specified in the daBsition
1 A readwrite classwide property, with a default value specified in the class definition
1 Areadwrite classwide property, with no default value specified in the class definition

1 A readonly classwide property, with a default value specifiedthe class definition

APLX Language Manual 67

You can also in principle have a readly property with no initial value, but this is not very useful!
You can also have a realy instance property, but this is indistinguishable from a-cedyg class
wide property because yoartt assign a different value to it in different instances.

Implementation noteAPLX uses a 'createn-write' approach when you assign to an instance

property. This means that, if you have never changed the value of a property for a particular instance
since the instance was first created, the value which is returned when you read the property is the
default value stored in the class definition. It follows that, if you change the class definition so that the
property has a different default value, the dewill immediately be reflected in all instances of the
class, unless the property has been modified for that instance.

Name scope, and Public versus Private members

The members of a class (i.e its properties and methods) can be either public orPuivkde.

members can be accessed from outside the class, whereas private members can only be accessed frol
within methods defined in the class (or from desk calculator mode, if a method has been interrupted
because of an error or interrupt and the methaoa ithe)si stack). Private members can also be

accessed by methods defined in a child (derived) class. If you are familiar with otherooigjetsd

languages such as C++ or Visual Basic, this means that private methods in APLX correspond to
‘protected’ rethods in those languages.

If you want to access a public member of an object from outside the class (i.e. not within a method of
the class), then you uset notationto refer to it. This takes the form ObjectReference.MemberName.
For example, suppose ybiave a variablenyrect which is a reference to an object of class

Rectangle . You could call theviove method and access tRendY properties for that object as

follows:

o{tgev0Zg67
o{tgevO0[g9:
myrect.Move 17 6
myrect.X

62
myrect.Y

84

Within the methods of the class itself, you do not normally need to use dot notation. This is because
the search order for symbols encountered when executing a method is as follows:

1. First, APLX looks to see if the symbol refers to a member ddfin the class of the object.

2. If not, it looks to see if the member is defined in the parent class (if any), iterating through each
of the ancestors in turn.

3. Ifitis not found in any of the ancestors, it then looks in the local variables of the method.

4. Finally, it looks in the global symbol table.

Thus, a simple implementation of the Move method above (defined in the Shape class from which
Rectangle derives) might be something like this:

APLX Language Manual 68

h" Ogqxg" D
]3_""6"0Ogxg"ujcrg"d{"coqwpv"D"urg&khkgf"cu"ejcpig"vag"?Z2z
14_""*Z"[+g*Z.[+-D

h
Constructors

As we saw earlier, a constructor is a special type of method, which is run automatically when an
instance of a class is created using G #t can be used to initialize the object, optionally using
parameters passénlT P G ¥or example, you might use this mechanism to specify the initial position
of a Rectangle object.

For a usedefined class, a constructor is defined as a method which takes a right argument, and which
has the same name as the class itself.

In someother objecioriented programming languages, constructors are a very important part of the
language because they are the only way of initializing property values. Fataisesd classes in
APLX, default values can be set up in the class definitionpastouctors are not always needed.

Where a class inherits from another class, the constructor which gets run automatically is that of the
class itself (if it has a constructor), or of the first ancestor class which has a constructor. Normally, in a
constrictor, you will want to do some initialization specific to the class itself, and also call the
constructor of the parent class (using C T ¢ to\do any initialization which it and its ancestors

require. You can do this at any point in the constructorgtigeeno restriction on where you make this

call to the parent's constructor; indeed, you don't have to call it at all if it is not appropriate.

In APLX, a constructor is also a perfectly ordinary method; it can be called in the normal way by one
of the otler methods in the class, or from outside (if it declared as Public). This can be usetul for re
initializing an object.

Some objecbriented languages also include a special method catledteuctor which is called just

before the object is deleted. APluserdefined classes do not have destructors. This means that, if

you need to release system resources (for example, close a file or a database connection), you need tc
call a method to do that explicitly before erasing the last reference to the intejec! However,

APLX will automatically take care of deleting all the properties of the object, and releasing the

memory back to the workspace.

Using Classes without Instances

So far, we have concentrated on using objects as instances of classes. Hdasses,can also be
very useful in their own right, without the need to make instances of them. There are two major
reasons why you might want to define a class which can be used directly:

Defining a set of constants

If you define a class with a set ofaceonly properties, those properties can be used as a set of constant
values or ‘'enumerations'. For example, you might have a class called Messages, which holds all the
messages which your application displays to the user:

APLX Language Manual 69

Messages {

OutOfMemory § g) Vj gt g" ku" pqv gpqwu"ogoqt{ g"eqgpvkpwg)
CuqufgnPcoggg)G vgt"vjg"pcog"qgh"vj g"oqun)
Qrqurngvggg)Qrg cvkgp"Eqorngvag)

CumTgugvgg) Fg"{qgqw"ycpv"vg"tgugv"vjg"oqfgnA)

...elc

}

You can then use this class in your application (without having to make an instat¢e
encapsulate all the messages and refer to them by name:

hTQgE] gemYU

]3_"""<Kh"TgTYC>0OKPaHTGGaVYU
[2] ShowError Messages.OutOfMemory
[3] :Endlf

h

This keeps all the messages together in one place, allows you to refer to theamnis @which is easy
to remember and is sefiocumenting, but does not pollute the global symbol space with hundreds of
APL variables.

Keeping namespaces tidy

In traditional APL systems, it often used to be the case the number of global functions wasgeery
By placing related functions in a class, the workspace can be kept tidy.

For example, in a statistical application, you might have a slassge which contained methods for
calculating many different types of averagedn, Median , Mode etc). As bng as these methods do not
write to any property of the class, there is no need to make an instance of the class to run them; you
can just run them using dot notationsasrage.Mean , Average.Median etc.

Note that, in APLX classes, there is nopetermned difference between a method which can only

be run inside an instance (sometimes known asstance methgdand a method which can be run as

a class member without an instance being created (sometimes knowtatis methoyl The only
difference ighat, at run time, if a method writes to a property, an error will be generated if there is no
instance to write to.

However, you do need to be aware of the difference between static and instance methods when using
classes written in other languages sasllava or C#. See the system functieancC Not more detalils.

Editing User-Defined Classes

You can create and edit usggfined classes in a number of ways:

1 Using the orscreen class editor, invoked from the Edit men)eprT . The class editor allows
you to edit each method of the class, &l &s set up properties and default values;

1 Using the line (‘'del’) editor;

1 Using the system functionH,zto convert a text representation into a class;

APLX Language Manual 70

1 Using the system functionkK go transfer global functions, operators and variables into the
class asnethods and properties.

APLX Language Manual 71

Mixins

What are Mixins?

As we saw in the previous sections, classes which you write in APLX can inherit from other classes;
this means that the methods and properties of the parent class (or classes) are available in the child
class.

Although the concept of inheritance is very powerful, there are some circumstances where more
flexibility is required. In APLX, a class cannot inherit from multiple different classes, only from one
parent class (although that might itself inhertnfr its parent, and so on). Nor can a class inherit from
an external class; for example, you cannot write an APL class which directly inherits from a Java
class.

'Mixins' address both of these requirements. They allow you to extend yotdaised classeso
that, at ruatime, they dynamically 'mix in' functionality (i.e. methods and properties, and perhaps
events) from one or more other classes; these can be internadéfised, and written in APL), or
external (.Net, Java, Ruby etc, or a BunlfAPLX system class).

Because mixins are attached dynamically at runtime, they are very flexible. For example, in a
commercial application you might have lamwice class (which perhaps inherits from an
AccountingDocument class). If you wanted to add functioitglwhich would allow thenvoice class

to be faxed or-enailed to the client, you could dynamically (at run time)4mix@Fax or EMail class

to handle the transmission of the document. This is similar to multiple inheritance as implemented in
some othelanguages, but more flexible because you don't need to know in advance which mixin will
be required; different instances of the same class can, if appropriati, dififerent classes.

When you 'mixin' another class, what effectively happens is thavaoigect of the mixedn class is
created, and merged into the original object. The public properties and methods of thelaes

now become available in the original object, very much as though they were defined in the original
class.

You can mixin as many other classes as you like; you can even mix in classes from multiple different
architectures. For example, you could write (in APE)rancialClock class to display the time in
London, New York and Singapore. It could niixthe System Classindow for the display, and the

Java classmezone to handle the different timeone information.

Using Mixins

To use mixins, you first create an object (i.e., an instance of your APL class) in the normal way using
T P G You then use the System Methpo K z tomnix another class into the objettoOK z kKas a

similar syntax taf P G the right argument is the class reference (or name, as a text vector), followed
by any arguments to the constructor for the class yomasiag-in. The left argument can be omitted

if you are mixingin an APL class, otherwise it defines the architecture for themikor example, if

APLX Language Manual 72

you have a class calledloice , and another class calledx, you can mix th&ax class into an
Invoice object as follows:

Create an instance of Invoice:

invgTpgy") Kpxgkeg)
6 Properties:
kpxO0OTpn" 4
customer
invoice_number
lines
order_number
6 Methods:
kpxO0OTpn"5
SetStatus

Mix class Fax into the Invoice object:

kpxO0OTokzkp") Hcz)

6 Properties and methods now include those of Fa X class:
kpxOTpn" 4

egxgtarcig""" "™ "Frdm"Féx'class

customer

hczapwodgt """ " "Frdm"Féx'class

invoice_number

lines
order_number

kpxOTpn"5
ugpf * s " Prdm'Féxclass
SetStatus

You can mixin further classes in treame way.

Although in this example we have mixadthe Fax class (using dot notation) after creating the
original object, in many cases the natural place to do this will be in the Constructor of the original
class. If you do that, the mix facility effectively becomes like multiple inheritance in some other
languages.

Mixing -in an external class

You can mix an external class (.Net. Java, Ruby, or aipulPLX system class) in to your APL
class in the same way. In this case, you need to provideadefnent ta OK z tomspecify the
architecture, in the same way as you would withG ¥or example, we could add a second mixin,
based on a Java class, tolitwice class shown in the example above. All the properties and
methods of the Java class tH@tome available in the object:

)l cxc)"kpx0Tokzkp")l cxcOwvknOFcvg)
Tdgz"kpxO0OTpn"5

Send SetStatus UTC after before clone compareTo equals getClass getDate getDay
getHours getMinutes getMonth getSeconds getTime getTimezoneOffset getYear
hashCode notify notifyAll parse setDate setHours setMinutes setMonth
setSeconds setTime setYear toGMTString toLocaleString toString wait

APLX Language Manual 73

inv.toLocaleString
20- Mar- 2009 11:43:03

Referencing the mixedin object directly

Sometimes you mayeed to access the underlying object which has been merged into your APL
object. For this, you need a reference to the underlying object. You can get this in two ways:

(1) T ok z &atually returns as an explicit result the underlying object reference (but with display
potential switched off, as a 'shy’ result). So you can assign this to a variable or property of your APL
class, and use this to call the underlying object tyrec

xc)"kpxO0OTokzkp")l cxcOwvknOFcvg)

f
f cuupcog

I
I
java:java.util

S5O0

g) |
0Te
.Date

(2) You can use the system methpd K z k@ get a vector of references to the mixins:

o{aokzkpugkpxO0OTokzkpu
my_mixins
[Fax] [java:Date]
my mixinsf 4 _O0OTencuupcog
java:java.util.Date

Search order and ovetriding a method

When a member of the class is referenced (either using dot notation, or as unadorned symbols when
running methods of the class), APLX will use the following search order to find thechaymbol:

1 First it will search the original class, (and its parent classes, if any)
1 Then it will search in the first mixin (and its parent classes, if any)

1 If there are further mixins, it will search these in the order in which they were fimxed

It follows from this that you can 'oweide' a property or method from a mixadclass; if your own
APL class defines a member of the same name as a member of thamuess$, the APL version
will be the one which is accessed; the mixedersion will ke hidden.

However, you can still call the mixead version by accessing it directly using the object reference
returned either when it is created (explicit result @K z)Kar fromT OK z K . our example, you
could define a methodstring , which overrdes the Java version, but calls it to get the date as text:

ht gvgUvt kpi
]3_Illlll6lluvtkpilltgrt
]4_Illllltg)KqukegllpW
]5_Illlllh

gugpvkpi"kpxgkeg

odgt"). *Okpxgkegapwodgt+.)"fcvgf").Kk
6 Insert toString as a method into class Invoice
) Kpxgkeg) "Tke")vgUvtkpi)"""""

1
inv.toString

Invoice number 11345301 dated Fri Mar 20 11:57:32 GMT 2009

APLX Language Manual 74

Removing mixins from an object

The System Methotl wp O&an be used to remove one or more mixins from an object. It takes a right
argumentvhich is a scalar or vector list of mixineferences to delete, and returns a binary vector with
1 for each mixin removed, and O if the mixin reference could not be found:

kpxO0OTokzkpu
[Fax] [java:Date]
kpxO0OTwpokz"kpx0Tokzkpu
11
k p x 0 Kinsk

kpxO0OTpn"5
SetStatus
toString

Note that you don't normally need to do this; the mixins will be deleted automatically when the object
which owns them is deleted.

APLX Language Manual 75

Branching and labels

Traditionally, the APL right arrowh' has been used tontrol execution in usetefined functions and
operators. It can be used as a conditional or unconditional branch, and thus allows conditional
execution and loops to be programmed. (Note that APLX alternatively allows you to control execution
using streturedcontrol keywords, which are preferable in many contexts).

The symboh is usually followed by an integer scalar, vector, or label name which identifies the line

to branch to. If the argument is a vector, the first element of the vector determines the line at which
execution will continue, and subsequent elements are ignibtee line number does not exist, the
function terminates (often a line number of 0 is used for this purpose). If the argument is an empty
vector, no branch is taken and execution continues at the next statement. Thus, conditional branches
can be progmamed by using a right argument which, at-tume, evaluates either to an integer
scalar/vector, or to an empty vector.

A label is a name which is followed by a colon. It is placed at the start of the line which it identifies it.
When the function is runng, it is treated as a local variable whose value is the number of the line on
which it is placed. It can thus be used directly as the argument of the right arrow.

A special case arises if no argument is given to the right arrow (a 'naked branch’)ritimates
execution of the current function and of all functions which called it, removes them from the state
indicator, and returns to desklculator mode. If the APL interpreter is already in deskulator

mode, this will have the effect of removingettop function and all thouse down to the next function
marked with an asterisk in thel display. A naked branch can also be used torengut.

Examples:

To branch back from line 10 to line 3:

To branch unconditionally to a line labelleaB2:

]32_"hNCD4"
[11] ...
] 34_"NCD4<VQVCNgSV[6RTKEG

To branch to a line labellachB2 only if LOoOPhas the value 10, by using an expression which
evaluates to an empty vector if the condition is not true or to the label valuetiiigis

132 "h*NQQR?32+1NCD4"
[11] ...
] 34 _"NCD4<VQVCNGSV[ORTKEG

To branch to one of several lines depending on the value of the vaxabhe

]8 "h*ECUG3" ECUG4" ECUG5+] KPFGZ _"

APLX Language Manual 76

To branch to one of several lines using a booleatovéa select which (execution will continue at the
label corresponding to the first 1 in the vector. If there is none, a message will be displayed and the
function will end):

] 8 "hUGNGEV1*ECUG3"ECUG4"ECUG5+"| ")Pqg"ecug"crrnkgu)

APLX Language Manual 77

Control Structures

As well as the conventional branch arrow, APLX suppsiriscturedcontrol keywordgor flow
control, often making for more readable functions.

The structured control keywords are not part of the International Standards Organisation (ISO)
specificdion of the APL language, but they are supported by a number of APL implementations
including APLX.

The structured control keywords include:

Function Keywords

Conditional execution :If :Orlf :Andlf :Elself :Else :Endlf

For loop :For :In :Leave :Continue :EndFor
While loop ‘While :Until :Leave :Continue :EndWhile
Repeat loop ‘Repeat :Until :Leave :Continue :EndRepeat
Case selection :Select :Case :CaselList :Else :EndSelect
Error trapping ‘Try :Catchlf :CatchAll :EndTry

Terminate current functic:Retur n

Branch :GoTo

Note: The general keywordnd can be use in place of any:ahdif :EndFor :EndWhile
:EndRepeat :EndSelect :EndTry

Using Control Structures

The keywords all begin with a colon character, and usually appear at the start of the line (BPLX w
automatically indent lines within a block for you). For example:

hKVGTCVG" P

[1] :If N<O

[2] 'Negative argument not supported'
[3] :Return

[4] :Endlf

5] ..

You can also place a block on a single diamdalimited line:

h KV &TE N
]3_"""<Kh"P>2"|]")Pgicvkxg"ctiwogpv"pgv"uwrrqtvgf)"|"<Tg
2] ..

Multi-line sequences can be nested to any depth, but-dinglsequences cannot contain further
nested control structureNote: The singleline form cannot be used \itTry..:.EndTry

APLX Language Manual 78

The APLX function editor prompts you with the correct indentation as you type. If you cut or paste
lines, you can clean up the indentation from the Edit menu (or pressi€CWindows, Cmdl under
MacOS)

The supported set of structuredntrol phrases is as follows (items in square brackets are optional).
You can end any sequence witihd rather than the more specific ending keyword shown. Note that
in APLX, structuredcontrol keywords are not casensitive when you enter them, but APXI re-
display them in the case shown.

Conditional execution

Syntax:

:If <boolean expression>

.[;iEIseIf <boolean expression>]
t;EIse]

‘Endif

The expression following th& keyword is evaluated. If it is true, the block which follows it is
executed, until arElself , :Else ,:End or:Endif IS encountered, at which point execution transfers
to the statement after thend or:Endif . If the expression is false, the same procedure is followed for
any:Elself blocks in the sequence. If none of thsts is true, thesise block (if any) is executed. It

is permissible to have as mamyself sections as you like.

For example, this function returns a string which depends on the value of B:

ATYJENCUUKH[" D

[1] :IfB=0
J4_"""""Tg)\gtaq)
[3] :E self B>0
]6_"""""Tg) Rqukvkxag)
[5] :Else
]8_"""""Tg)Pgicvkxag)
[7] :End

h

You can also add\ndif or:Orlf phrases after arf or:Elself phrase. If you us&\ndif , each
expression must be true for the block to be executed, whereas if yariuseonly one of them needs
to be true. (Theandlf and:orif conditional expressions are evaluated only if necessary). For
example:

hTgC" ENCUUKH[" D

[1] :1fB=0

[2] :AndIf A=0

]5_"""""Tg)Dgvj "ctiwogpvu"ctg" | gtaqg)
[4] :Elself B=0

[5] :Orlf A=0

[6] Tg)Qpg"ctiwogpv"ku"]|gtaq)

[7] :Else

] _"""""Tg)Pgkvjgt"ctiwogpv"ku"]|gtagqg)
[9] :End

h

APLX Language Manual 79

For loop

Syntax:

:For <control variable name> :In <vector expression>

:EndFor

The control variable is assigned successive values from the vector expasdithe loop is executed
once for each value. The values can be of any type, not just integers. The vector expression is
evaluated only once, at the start of the loop. For example:

<Hgt " Y"<Kp"$Kv)u$"$Qhhs$"s$Vgs"sYgtms$"|l ")JIJkIqg)"Y"|]"<G
HiHo | t's
HiHo Off
HiHo To
HiHo Work

You can use thecontinue keyword within the loop to force premature termination of a particular
iteration- execution continues at the top of the loop with the next value (if there is one). You can also
use theLeave keyword to exit the loop completely and continue execution with the line after the
:EndFor .

While loop

Syntax:

‘While <boolean expression>
:EndWhile
If the boolean expression is true (value 1), the loop body is executed. At the end, control ret@rns to th

‘While statement and the loop isegecuted as long as the boolean expression remains true.

hGxcnwcvg"D
[1] :While B>0
]4 """""DgPgzvPqfg"D
[3] :EndWhile

h

An alternative form allows a test at the end of the loop as well:
Syntax:

:While <boolean expression>

:Until <boolean expression>

The:Continue and:Leave keywords can again be used to force an early termination of a particular
iteration or of the whole loop.

APLX Language Manual 80

Repeat loop

Syntax:

:Repeat|[<integer expression>]

:EndRepeat

The loop body is repeated a maximum of N times, where N is the value of the integer expression
(evaluated only once, at the start of the loop). If the integer expression is omitted, the loop is repeated
for ever, unless terminated in another way. For example

<Tgrgcv"5"]"TVU"I| "<Gpf Tgrgcyv
2002 7 30 14 36 2 228
2002 7 30 14 36 2 228
2002 7 30 14 36 2 228

The:Continue and:Leave keywords can again be used to force an early termination of a particular
iteration or of the whole loop:

hl WGUU=XCN

[1] 'Guess a humber'
[2] :Repeat
]5_"""""XCNgT
[4] :If VAL=231153

[5] 'You were right!'

[6] ‘Leave

[7] :Endif

[8] 'Sorry, try again..'
[9] :EndRepeat
h n

You can also end the loop with amtil statement so that executiorpeats only if a boolean
expression remains true:

:Repeat|[<integer expression>]

:Until <boolean expression>

Case selection

Syntax:

:Select <expression>
:Case <expression>

[:CaselList <vector expression> |
[:Else]
:EndSelect

The:Select expression can be any APL scalar or array. It is matched against each@isthe
expressions (or elements of tilkaseList expressions) in turn. If they match in value and shape
(using the same rules as the AP{match) primitive), the body of lines following is executed, until

the next control keyword in the sequence is reached when execution jumps to the line following the

APLX Language Manual 81

:EndSelect (For:CaseList the match is done against each of the elements of the veptassion
in turn, and if any of them match then the test is regarded as true). If none of the expressions match,
the:Else clause (if any) is executed. For example:

hTYENCUUKH[" D=TKQ

TKQg3

[2] :Select B
[3] CaseO
] 6 _ ""Tg)Uecnct " | gtaq)
17 _ <Ecug"3§82
] 8 _ "Tg) Ngpi vj"3"xgevqgt. "xcnwg"2)
]9 <EcugNkuv"S3
] : "Tg)Uecnct"kp"vjg"tcpig"3"vqg"32)
[9] Ise
] 3 ' "Tg)Pgpg"gqh"vjg"cdgxg)
[1]EndSeIect

h

CLASSIFY 0
Scalar zero

CLASSIFY 2

Scalar in the range 1 to 10
ENCUUKH[" 3

None of the above
ENCUUKH[" 38§82

Length 1 vector, value O

w»
N

Error Trapping

Syntax:
Try

.[;.Catchlf <boolean expression> |
[:CatchAll
;EndTry

The block of code following thary keyword is executed, until either an error occorsa
:Catchlf , :CatchAll ,:End or:EndTry is encountered. (Unlike the other control structures,
Try....EndTry blocks cannot be placed on a single line).

If no error has occurred within thery block, execution transfers to the line after thel or
EndTry .

If an error occurs in thary block (either in the statements in this function, or in any functions called
from it), control transfers to the firstatchif line, and the expression is evaluated. If it is true, the
block of code following thecatc hif is executed, and execution then resumes afteetd&ry or

:End . If the expression is false, the same procedure is followed for any fig#agnt blocks in the
sequence. If none of the tests is true,.ta&chAll block (if any) is executed. It i[germissible to

have as manycatchlf sections as you like.

Typically, you use thecatchif statement to catch specific types of error, by lookingiGar T GV
See the section Error trapping using :Try...EndTry for more information.

APLX Language Manual 82

Miscellaneous keywords

The:GoTo keyword (followed by a line label name) can be used to branch directly to a label. It is
equivalent to using a conventional ARIsymbolto branch to a label. You can branch to a label inside
the same control structure, or to a label outside the control structure, but not to a label which is more
deeply nested than the line you are branching from.

The:Return keyword causes the current fiion execution to terminate. It is equivalent to a
conventional APL branch to line 0.

Named loops

Normally the:Continue and:Leave keywords apply to the current loop in which they are executed,
so that if you have a loop nested within a loop, executismmnes at the start or end of the innermost
loop. However, you can also name loops by including a label at the start line, and follow the
:Continue Or :Leave Wwith the name to apply it to a particular level of nesting. In this example, if the
JIf clause isrue, execution continues at line 9:

hKVGTCVG=P
[1] OUTER: :Repeat
[2] :For N :In SAMPLES
[3] C:IfINTERRUPTED

[4] :Leave OUTER
[5] :Endif

ey ..

[7] :EndFor

[8] :EndRepeat

9 ..

Errors

If there is an error in the usage of structured keywords, APLX willrtep®RUCTURED CONTROL
ERRORThis typically arises if the keywords at the beginning and end of the block do not match up
correctly, or if you branch to a line label within a control structure without executing the initial
keyword line at the start of thsock.

Note that APLX does not prevent you from fixing a function which is syntactically incorrect.
However, the APLX editor will warn you of mismatched structucedtrol keywords if you select
'‘Clean up indentation’ from the Edit menu (€tih Windows Cmdl under MacOS).

APLX Language Manual 83

System commands

APLX supports a range of commands (‘system commands’) which are used to communicate directly
with the system. They are not part of the APL language itself. APL system commands start with a
right parenthesis:

)SAVE

The display generated by a system command cannot directly be used as the argument to a function.
However, in APLX, system commands can be executed using(thecute) primitive:

"eqpvgpvu"gh"nkdtct {"2

The output from executed system commands can be captured in a variable or passed as an argument 1
a function:

Zgn) +U[ODQNU)
X
IS 1026, USED 21

See the reference section on System Commands for a full list of available commands.

APLX Language Manual 84

System Functions and Variables

APL system functions implement a wide variety of systetated or utility features. They are bdiiit

to the APL interpreter, but often call out to the operating system to perform some function (such as
reading from a database, or fetching the current date and time). They have names of one or more
characters and start withfa T D QZ/ T Y etc).

System functions can be niladic, monadic or dyadic.

See the reference section on System Functions and Variables for a full list.

APLX Language Manual 85

System Methods

Just as traditional APL interpreters have system variables and system functionsr@heseall
begin with theT character), system methods are-gedined methods (also with names beginning with
T) which apply to internal useatefined object classes, and in most cases to external classes as well.

You can call a system method exactly as wauld call an ordinary method of a class, either using
dot notation (for example{ Rq k p v 0 T E N); orwithio @ usedefined class method) by simply
using the system method's nhame such B3N C U U Kezjoigalent tof VI KUO TENCUUP COG

System methods cde niladic, monadic or dyadic.

See the reference section on System Methods for a full list.

APLX Language Manual 86

System Classes

A System Clasis a predefined class which is part of APLX. They are mostly used forinserface
programming. Examples are therm, Timer , ChooseColor andcChart classes. (In previous versions
of APLX, these classes were accessed thrqugltkAlthough you can continue to uger Kyou may
find the new clasbased syntax more readable and more consistent.)

To create an instance of a ttgvel System class (such as a Form or agefened dialog), you provide
the name of the class as the tighgument tq P G and usé T gs the left argument to indicate that
this is a System class:

NI g)T)"

F NI OTPN"
Close
Create
Delete
New
Open
Send
Set
Show
Trigger

PGY")Ej qgqugEgnaqgt)

You can then use dot notation to access the properties dhddeef the object:

FNI Oeqngt 456" 45" 78
DLG.Show
1

See the separate manual®ystem Classes and Udaterface Programmindor more detalils.

APLX Language Manual 87

Files and Databases

APLX offers a range of features for accessing data in files. These indcitieefs both for storing and
retrieving data within your APL applications, and for exchanging data with other applications. They
include:

Component Files

For simple APL applications, you can often keep all the data you need in the current workspace in
APL variables. However, for more sophisticated applications, this may not fit your requirements. For
example, if you wrote a suite of functions which produced monthly profit and loss accounts, you
might want to store the data for each month separately. 8ald arrange to keep the data in a series

of stored workspaces, but you would not want to replicate the functions in each of these workspaces.

Component fileprovide an efficient and easg-use method to store APL variables (of any type,
shape, and sizé) a file, and read them into the workspace when they are needed. Each individual
item in the file is known as @@mponentA single number may constitute one component, while a
matrix containing several thousand numbers may be its next door neighbour.

Functions, operators and classes can also be stored in component files, but they must first be converte
into character arrays by the system functian,Tor stored via the overlay system functipm X

APLX supports two different component file systems. Titst is based on system functions such as
T HV Kltuses a syntax which is compatible with APL interpreters from other vendors.

The second of these is based on theddeess primitivesin 06, as implemented in the predecessor
to APLX, APL.68000.

For more information, see the separate section on Component File Systems.

Native Files

‘Native' files are operatingystem files which are not necessarily associated with APL, and which are
typically used for exchanging data with RARL applications. For exaphe, they might include text

files, HTML pages, or binary files produced by a Fortran application. Unlike component files (which
retain information about the type and shape of APL data), the structure of native files is unknown to
APLX, so you as the progmmer are responsible for specifying how the data should be interpreted.
For example, you can specify that you want to read the first four bytes of a file as an integer, and the
next 32 bytes as a character vector.

See the section on Native File Functidmisdetails.

APLX Language Manual 88

System Functions for Data Import/Export

Although native files provide a general, ldewel way to exchange data with other applications, there
are a number of common file formats for which APLX provides an easier alternative, by means of the
T K OR @&NAT G Z R anetions. These allow you to read or write the entire contents of a file in a
single call. They support a number of common file formats, for example Unicode text, or Comma
Separated Variable (CSV) files used for spreadsheets. ThetagegafT K OR GENAT G Z R Q9 that

you do not have to write any code to interpret the file format yourself, since APLX already has the
necessary logic butin.

Accessing Database Records

Much of the data in modern computer systems, especially for largeercial applications with

many thousands of records, is held in relational databases. These are accessed and updated using SQ
(‘Structured Query Language'). You can easily interface to such databases by upiag#ystem

function. This allows you teead and write records in most major commercial database systems
including Oracle, SQL Server and DB2, as well as egmurce databases such as MySQL and
PostgreSQL. You can also exchange data with popular desktop file systems such as Microsoft Access.

Other facilities

In addition to the above facilities for directly reading and writing data into the APL workspace, APLX
provides a number of System Classes which can manipulate specific types of files such as images and
movies. See the documentation on tituPe, Movie, Image classes in the separate maystem

Classes and Usdnterface Programming

APLX Language Manual

Section 2: APL Primitives

89

APLX Language Manual 91

+ Conjugate

One-argument form See also twargument formAdd

+ returns the value of the numeric expression to its ri@de (alsq output which can be used for a
similar purpose.) Contrast the first example below, which places the result of a multiplication in
COST, but does not display it, with the second:

EQUV" "g"5426: org" "+t "*Pq"tguwnv"fkurnc{gf+
+CQUvV"¢g"5426: 078" rrrrx Tguwnv " fkurnc{gf+
2739.2
-] 3"2"39+"*4" 5888+ "*Ctiwogpv"fkurnc{gf"wp
1017 123
456
+ Add

Two-argument form See also onargument fornmdentity (Conjugate)

Addsthe numbers in the right and kfand arguments:

12+3 (Adds two scalars)
15
372+01 4 (Adds the corresponding numbers
382 in vectors of equal size)
11+65 2398 3 (Adds 11 to each number in a vector)
76 34109 14
TABLEg" 4" 5" §"S"g""""""""*Rwvu"vjg"pwodgtu"3"vqg" 8"
10+TABLE (Adds 10 to each number in TABLE)
111213
141516
TABLE+TABLE (Adds corresponding numbers in
246 matrices of equal size and dimensions)
81012
3" -7"*4"4"8S6+"*S7T+""""""*Uecnct"nghv"ctiwogpv"
6 23 23456 elements of right argument)
45

4" " 5. 7" * 4" 4" §S6 tAtgtingidtstniuét be the same length)
LENGTH ERROR

4" 5-7*4"45S6+*S7+

N

*4" 4858S6+" 32" *785+-7"*4"4"5S8S6+"*S7+
67 1112 45678 (Corresponding elements added)
89 1314

APLX Language Manual 92

- Negate

One-argument form See also twargument fornSubtract

Reverses the signs of the righand argument:

1 46

*133"39"145+"*4"5815-S8+
1171723 210

12 3

2
- 14761
1

- Subtract

Two-argument form See also onargument formNegate

Subtracts the number(s) in the rigtgnd argument from the number(s) in the-kefhd argument:

240-1 (Subtracts one number from an other)
239
846 -102 (Subtracts each number in a vector from
744 the corresponding number in a vector of
equal size)

227415 -1 (Subtracts 1 from each number in a
21 514 vector of numbers)

VCDNG" g"5"5"§" S§";

100- TABLE (Subtracts each number in a matrix
99 98 97 from a scalar)
96 95 94
939291

TABLE- TABLE (Subtracts each number in a matrix
000 from the corresponding number in a
000 matrix of equal size and dimensions)
000

1-5Q22 §&+"*S7+""""*Gcej"gngogpv"kp"vjg"tkijv"ec

"4 01 0 1 2 3 4 subtracted from 1)
2 3
23 -7"*4"4"8§S6+"*S7T+"""*Ctiwogpvu"owuv"dg"vjg"uc

LENGTH ERROR i X
23-7*4"48S8S6+*S7+
N
*4" 48S6+"327*7454"8S6+"*S7+
473 98 210 1 2 (Corresponding elements subtracted)
271 76

Note: Remember that APL uses a special symbol (the high minasindicate negative numbers.
You will see some examples above.

APLX Language Manual 93

x Sign of

One-argument form See also twargument formMultiply

Shows the sign of the number(s) in the righhd argument. Each positive number is represented by a
1, each negative number byraand each zero by a 0.

x33980°5
11071
x(733.1027)55(22 8l 4-S6+
71011 10
11

x Multiply

Two-argument form See also onargument fornsign of

Multiplies the number(s) in the rigitand argument by the number(s) in the-leéind argument.

23.8x0.12 (Multiplies one number by another)
2.856
128 39%x9 81 2 (Multiplies each number in a vector by
108 648 78 the corresponding number in a vector of
equal size)
12x8991 287 (Multiplies a scalar by each number in
1068 1092 24 1044 a vector)
TABLEg" 5" 7" 8" S" 37
TABLE x 5 (Multiplies each number in a matrix
5101520 25 by a scalar)
30 35404550
55 60 65 70 75
TABLEXTABLE (Multiplies each number in a matrix
1 4 9 16 25 by the corresponding number in a matrix

36 49 64 81 100 of equal size and dimensions)
121 144 169 196 225 A A
4"6"T7T"*4"4"8§S6+"*ST7T+"*Ownvkrnkgu"gxgt{"gngogpv"

10 24 2468 10 argument by 2)
68
4nu5uéu7u*4n4n§36+u*g7+
LENGTH ERROR (Arguments must be the same length)

4" 5067*4"48S6+*S7+
N

*4" 4586+"32"*585+067"*4"4"556+" *S55+
510 1020 369 (Corresponding elements multiplied)
1520 3040

APLX Language Manual 94

+ Reciprocal

One-argument form See also twargument fornDivide

Gives the reciprocal of the rightand argument, that is, the result of dividing 1 by each number in the
right-hand argument.

+2 (Reciprocal of 2, ie 1 divided by 2)
0.5
+105171 (Reciprocal of each number in a vector)
010211
+5.25.01 (Reciprocal of each number in a vector)
24100
E*x4" 483" 4"6"7+*ES6+"""""*Tgekrtqgecn"qh"gcej"gng
1 0.5 1234
0.25 0.2

If the right argument contains a zero, APLX will geieraDOMAIN ERROR

= Divide

Two-argument form See also onargument fornmReciprocal

Divides the number(s) in the Idftand argument by the number(s) in the Hgiaind argument.

9+3 (One number is divided by another)
3
0+0 (This is a special case)
1
211575 13+5 (Division of each number in a vector by
4231526 a single number)
12824+286 (Each number in one vector is divided by the
614 corresponding number in another vector)
VCDNG" g"4"7"§"sS"32""""""*pPwodgtu"3"vqgq"32"cuukip
TABLE+10 (Each number in TABLE is divi ded by 10

0.1 0.2 0.3 04 05
0.6 0.7 0.8 09 1
TABLE=TABLE (Each number in one matrix is divided by the
11111 corresponding number in another of the same
11111 size and dimensions)
1+5(S5) (1 divided by each element on the right)
0.2 10.50.33333333330.250.2
4" "5E7"*S6+"*S74+" """ xCtiwogpvu"owuv"dg"vjg"
LENGTH ERROR
4" 5E7*S6+*S7+
N
*86+" 8RB +E" 7" *4"4"586+" %S85+
0.20.40.60.8 10 5 111
3.333333333 25

APLX Language Manual 95

(Corresponding elements divided)

If the right argument contains a zeARLX will generate @OMAIN ERROR

I Ceiling

One-argument form See also twargument fornGreater of

The number or numbers in the rigihdnd argument are rounded up to the next whole number.

L 45.9
46
L 3.8 (Note effect of rounding up on a
-3 negative number)
L1.2 0.399.1238 (Each number in a vector is rounded up)
201003
L 0.5+1.2 0.39.12.8 (0.5is subtracted from each number
gr2 ;g nnwn v dghgtg"L"ku"crrnkgf
‘true’ rounding)
TABLE
62.8 3.0 2.9
9.1 7.3 0.01
L TABLE (Each number in TABLE is rounded up)
633 2
108 1
L*309"330; ;"1405+"*4"481303"3905"1203"32506 +
2122 1 18 (Each element is rounded up)

0 104
Comparison tolerance

When acting on a number whichvery close to but slightly bigger than an integer, Ceiling may round
down to that integer rather than round up. This will happen if the argument is within comparison
tolerance of the integer, and is therefore considered in APL to be equal to it.

Effect on internal representation

See the description ofFloor for information on the internal representation of the result of Ceiling.

APLX Language Manual 96

L Greater of

Two-argument form See also orargument fornCeiling

Finds the larger of two numbers. Each number in the-hghtl argument is compared with the
corresponohg number in the lefhand argument. The result is the larger number from each
comparison. (This operation is affectedibg vthe comparison tolerance)

9" L ;3
91
Pz e ;e x /i g" npgi cvkxg" pwodgt "
5 is considered the greater)
42"9"62"L";3"5"e3" """ Gcej "pwodgt"kp"c"xgev
91741 with the corresponding number in a
vect or of equal size)
LLVCDNG" ® " " nnmmmmnmmmmwn s \jig"l"gqgrgtcvgt"wugf "yl
62.89.1 to select the biggest in each row.
See the entry for /.)
4" 3" *4" 4" §S6+" {TBeesuit'bf'cdmparing 2 with each
2 22 223 element in the right argument)
34
4" " 504" *4" 4" 8S6+"*S5+""""*Ctiwogpvu"owuv"dg"vVvijg

LENGTH ERROR))
4" 5L 4%4"458856+* 85+
AN

*4" 48S6+"5"*S5+5"*4"4"5S6+"*5" 4" 3+
33 33 323 (Corresponding elements compared)
34 34

I Floor

One-argument form See also twargument formiLesser of

The number or numbers in the righard argument are rounded down to the next whole number.

[45.9
45
I 2.3 (Note the effect on a negative number)
3
[1.270.399.12.8 (Each number in a vector is rounded
11992 down)
[0.5+1.2 0.399.12.8 (0.5is added to each number before
gn2"; ;e P gu"crrnkgf"vaq
rounding)
TABLE
62.8 3.0 2.9
9.1 7.3 0.01
[TABLE (Each number in TABLE is rounded down)

62 373

kv.

APLX Language Manual 97

970
[*1203"13203"3305"906+"*"4"481205"40:"::03"1405-

1711117 12 (Eac h element is rounded down)
99 73
Comparison tolerance

When acting on a number which is very close to but slightly smaller than an integer, Floor may round
up to that integer rather than round down. This will happen if the argumeithis comparison
tolerance of the integer, and is therefore considered in APL to be equal to it.

Effect on internal representation

If the argument to Floor or Ceiling is an array which is held internally in boolean or integer form, then
the result will &ways be represented in integer form and the numbers in the array will be unchanged.

If the argument to Floor or Ceiling is internally in floatipgint form, then in general, provided all the
numbers within the argument are in the range of numbers waicherepresented as integers, the
result will internally be represented as integers rather than floating points. Floor or Ceiling can
therefore be used to force the internal representation of numbers to integer form:

X9502"32202"14202

TDR X
3

[gl Z

TDRY
2

X
3100 20

Y
3100 20

X=Y
111

In this example, X is held internally in floatifmpint format, but Y is held internally in integer format.
The values of the array elements areyéeer, equal.

SeeT F for more information on data representation.

Differences between 3it and 64-bit implementations of APLX

In the 32bit version of APLX, numbers can be represented as integers if they are in the range
72147483648 t0 2147483647 . If the argument to Floor or Ceiling contains numbers which round to
numbers outside this range, the result will internally be represented in flpatimgformat.

In the 64bit APLX64 interpreter, numbers can be represented as integers if they are in the range
79223372036854775808 t0 9223372036854775807 . However, the floatingpoint representation of a
number is limited to 53 bits of precision, which is equivalent to saying thetzatand above, several
integers all map to the same floatipgint representatio For this reason, if the argument to Floor or
Ceiling is in floatingpoint form, and contains numbers whose magnitude is equal to or greater than
2*53 , the result will be left in floatingpoint form so as not to introduce a spurious precision to
numberswvhich are inherently imprecise.

APLX Language Manual

98

In this example using APLX64 is represented internally as a-b# integer, and is represented
internally as a floatingpoint number:

Xg4, 75
X
9007199254740992
TDR X
2
[26302
Y
9.007199255E15
TDR Y
3
Iy
9.007199255E15
TFT" [[
3
ly-1
9007199254740991
TET" FQ
2
[Lesser of

Two-argument form See also onrargument fornfFloor

Finds the smaller of two numbers. Each number in the figrid argument is compared with the
corresponding number in the kfand argument. The result is the smaller number from each
comparison. (This operation is affectedibg vthe comparison tolerance)

9"

87

P

9

42"

20340

TABLE1

0 366
916 4

TABLE2

12 "8 17
7 01

'62"I";3"5"3" " » "

1 ; 3

is considered the smaller)

*Gcej "
with the corresponding number in a
vector of equal size)

VCDNG3" ILE2V C D(Each number in a matrix is compared

0 8 17
7 01

213" *4" 4"
1 12 122

22

with the corresponding number in
a matrix with the same number of rows
and columns)
§56+" xS
compared with 2)

pwodgt "

*Gcej "gngogpv"

||||||||||||||||||||||||||llllnun*vjgllpgiCVngllpWOdgtuh

kp"c"xgev

kp"vjg"tk

APLX Language Manual 99

| Absolute value

One-argument form See also twargument fornResidue

Makes any negative numbers in the ripandargument positive.

|27477.83
24783
~*]1203"13203"3305"47+"*4"48132"5"167"403+
0.110.111.325 103
4521

| Residue

Two-argument form See also onargument formAbsolute vale

For positive arguments, gives the remainder resulting from dividing the hightl argument by the
left-hand argument. When the arguments are of the opposite sign, the result is the complement of the
result that you would get if they had the same s&mfor nonzero results, you must subtract the
remainder from the divisor. (This operation is affected l®yvthe comparison tolerance)

3]10 (The remainder of 10+3)
1
71245025 (The remainder of dividing each
3504 number in a vector by 7)
3172]|5 203 (The remainder after dividing each
231 number in a vector by the corresponding
number in another similar vector)
9" ~" 8" 32
65432106514
VCDNG" g" 4"5"8§"§S§"g""""""""*Vjg"tgockpfgt"qgh"fkxkf
4| TABLE number in a matrix by 4)
123
012
TABLE | TABLE (The remainder after dividing each
000 number in a matrix by the
000 corresponding number in another)
4" ~3"* 4" 4"5S6+"*S5+"" """ *Fkxkfg"gxgt{"gngogpv"d
1 10 101
10

4" "B ~4" x4 47§86 + "ganrisiust Be'ol@gual length)
LENGTH ERROR))
4" 5~4*4"48S6+*S5+
N
*4"4§S6+"5"*g5+""5"*4"4"§g6+"*5”4"3+
01 12 001 (Corresponding elements divided)
03 01

APLX Language Manual 100

S Index generator

One-argument form See also twargument formindex of

S generates a series of integers which start at the index origik @nd whose length is specified by
the right argument which must be 0 or a positive integer scalar. The examples below assume th
default index origin of 1 (sepK @or more details). The argument3anust be a simple numeric
scalar or oneelement vector.

TKQH L L L I L T T T O L L L O T LR T R T R TR 1] "*thCWﬂV"UgVVka IlthlTKQ_
1

To generate the series from 1 to 10:

S 10
12345678910

To generate the series 1 to 5 to be used in selecting the first five elements from a vector (see separate
entry for[]):

"6"83" 7" "4 3", 2"5"423"34"75"49": 2

RTKEGY4;
G] §" 7

RTKE
29461588

To generate a vector of five elements containing the series 1, 1 2, and so on, u&esitt®) operator.

SAS7
1121231234 12345

A common mechanism to generate an empty vector is:

So
(No display)

S Index of

Two-argument form See also onargument fornmindex generator

S finds whether the items in the right argument occur in the left argument (which must be a vector)
and if so in what positions. For each elemenh@right argument a number is returned showing its
position in the left argument. If an element is not found in the left argument (or if the arguments are of
different types), a number one greater than the position of the last element in the left algument
returned. The shape of the result is the same as that of the left argument.

APLX Language Manual 101

The result of dyadi is influenced byl kK Qvhich will control whether the index positions start at 0 or
1 - for more details see the entry fpK .Qrhe comparisons done by this operation are affectqdehy
the comparison tolerance value.

4" 7" ;"36"42"S";
3 (9 is in position 3)

4" 7", "36"42"S" 34"t x 34 kyup)v i kp"vjg'nghv"
6 number 1 greater than the number of

. elements on the left results)
) Il QTUWEJ) " S") U)
4 (S occurs in position 4)

) CDEFGHI JKLMNOPQRSTUVWXYZ[\)"S")ECTR)
311816 (The characters 'CARP" are in positions
3118 and 16)

)y CDEFGHI JKLMNOPQRSTUVWXYZ[\)"S")RQTM" RKG)
16 151811271695 (The 27 in the result indicates
characters not found in the 26 - character
left argument. In this case the 'space’
character.)
FC[Ug) OQP) ") VWGU) ") YGF)

SDAYS
3 (DAYS is a 3 element vector)
DC[U"S")OQP)")VJWTU)"""""*)OQP)"hquf"kp"hktUV"
14 is not found)

See (Match) for a discussion of the criteria which determine whether two elements are considered
the same.

? Roll

One-argument form See also twargument fornDeal

Generates numbers chosen at random from the series of the first N integers which start at the index
origin (T K)where N is specified by the right argument. In the examples belog set to 1, the
default.

? 100 (Generates a random number between 1
14 and 100)
? 10 100 1000 (Generates 3 random numbers, the first
10 39 520 between 1 and 10, the second between
1 and 100, the third between 1 and 1000)
DATAg" A322"§"322"""""""* | gpgtcvgu"322"tcpfqo"pwo
1to 100 - not necessarily unique)
A* 7+"*4" 5832+

5
143 6 3

~N P w

710

Note: The system variabfeT random Ink) contains a value used to generate random numbers. To
generate the same number(s) on two occasions,s#b the same value before each use. of

APLX Language Manual 102

? Deal

Two-argument form See also onrargument fornRoll

Generates as many random numbers as aodisplan the lefthand argument from the first N
numbers starting gt K Qvhere N is specified in the righttnd argument. Each number generated is

unique; that is to say there are no repetitions. The left and right arguments must be simple numeric
scalas or oneelement vectors.

10 ? 100 (A request for 10 unique random numbers
68"76"44"7"8:";6"5;"74":6"6""""kp"vjg"tcpig"3"vqg" 32
NKUVII gll 5II AII 32" n n " n n n n n n n * 5lltcpf qoll pWOdgt u" dgvyg

are put in LIST)
DKPlI Qg6"685838A322

BINGO (16 random numbers between 1 and 100
41124671 are putinto a 4 - by - 4 matrix called
6 54 68 4 BINGO)
63 94 87 58
21 7050 75
4723 (A request for 4 unique integers in
DOMAIN ERROR the range 1 to 3 causes an error)

Note: The system variabfeT random link) contais a value used to generate random numbers. To
generate the same number(s) on two occasiong,s&h the same value before each use. of

TTN" §" 34567

5 ? 10000

97 834 948 36 12
TTN" §" 34567

57 10000

97 834 948 36 12

* Exponential

One-argument form See also twargument fornPower

Returns the mathematical constant e (approximately 2.718) raised to the power of the right argument.

*1

2.718281828 (e to the power of 1 is e itself)
*2

7.389056099 (e squared)
*S3 (e to the power 1 2 3)

2.718281828 7.389056099 20.08553692
, *S4+"* 4" 4586+
2.718281828 7.389056099 2.718281828 7.389056099
20.08553692 54.59815003

APLX Language Manual 103

* To the power of

Two-argument form See also onrargument forme' to power

Raises the lefhand argument to the power of the rigiiaind argument.

2*3 (2 to the power 3, or 2 cubed)
8
"1*234
1711 ("1 to the power 2 3 4)
2*05
1.414213562 (Square root of 2)
246816*2
416 36 64 256 (Square of 2 4 6 8 16)
~1*0.5 (No unreal number result allowed)
DOMAIN ERROR
~1*0.5

AN

If the right argument is negative, the result is the reciprocal of the result obtained from using a right
argument which is the absolute value of the negativenaggti

273
0.125

+2*3 (Reciprocal of 2*3)
0.125

(S5+*4"45S6++, 4
14914

916
ceNatural log

One-argument form See also twargument formiLog to the base

Finds the natural logarithm, that is the log to the base e, of the number or numbers in-thendght
argument (e is appximately 2.7182). The numbers must be positive.

e 10 (Finds the log to base e of 10)
2.302585093

® 3918 (Finds the log to base e of 3 9 and 18)
1.098612289 2.197224577 2.8903717 58

®e 3.3 (Finds the log to base e of 3.3)

1.193922468
o 4" 45S6+" * S5+
0 0.6931471806 0 0.6931471806 1.098612289
1.098612289 1.386294361

APLX Language Manual 104

celog to the base

Two-argument form See also onrargument formNatural Logarithm

Computes the log of a number or numbers to an arbitrary base. Fhareftargument is the base and
the righthand argument is the number whose log is to be found.

5" g ;" mrmm (The log of 9 to the base 3)
2
4"5"6"7"80ce6";"38"47"58""*Vjg"nqgi"qgh"gcej "pwodgt
22222 the corresponding base on the left)
4" " 4"6":"38"54"86
123456
4" " 350;
3.797012978
4" 50.*4" 484"6":"38+"*5"; " 49+
12123
34 (Corresponding elements of left and right
arguments used as successive arguments to
vjig" e hwpevkqgp+
u PiI times

One-argument form See also twargument fornCircular & Hyperbolic functions

The value of pi (approx. 3.141592654) is multiplied by the figirid argument.

gt g e (pitimes 1 is pi)
3.141592654
GE"™ " "k e et f kxkfgftd{"6."qt"67
0.7853981634 radians)
3.1415 92654 6.283185307 9.424777961
32"52"6706GE3:2"""""m"r " xeqgqpxgtvu"32"42"67"fgilt
0.1745329252 0.5235987756 0.7853981634

"*rk"vkogu"gcej "pwodgt " Kk

APLX Language Manual 105

G Circular and Hyperbolic functions

Two-argument form See also onrargument fornpi times

This form of G provides you with a group of related functions. The left argument identifies which of
these functions you wish to use, the right argument is the data the function works on. (Data to
trigonometric functions is expressed in radians.)

Left argume nt O or positive Left argument negative
0 square root of 1 - X*2
1 sin X ~1 arcsin X
2 cos X ~2 arccos X
3 tan X ~3 arctan X
4 squa re root of (X*2)+1 ~4 square root of (X*2) -1
5 sinh X ~5 arcsinh X
6 cosh X ~6 arcosh X
7 tanh X ~7 arctanh X
For example:
14" GEg """ nmr v g7 fgjitggu"ku"GEGB"tcf ke
0.7071067812 Sin of 45 degrees is 1+root 2)

The function G 6 G I 6 @re known as the 'Pythagorean functions'. For example, given a right
angled triangle with hypotenuse of lehdt, the length of one of the other two sides istiines the

length of the third side. Conversely, if one of the sides in the triangle adjacent to the right angle is of
length 1, the length of the hypotenuse is givem lifimes the length of the thirdde and the length of

the third side iS4 @ times the length of the hypotenuse.

Numeric Accuracy

Calculations of trigonometric functions are subject to accuracy limitations, especially near
mathematical singularities. In addition, for very large argumeméscircular functions become

meaningless because of limitations in the resolution of flogimgt numbers, since the 'correct’

answer depends on bits which have been lost from the representation. For these reasons, APLX gives
DOMAIN ERROR if you asKor the sine, cosine or tangent of a number greatertsan

APLX Language Manual 106

I Factorial

One-argument form See also twargument fornBinomial

When applied to a positive whole numbegives the product of the whole numbers from 1 to that
number, inclusive.

13 (Equivalent of 1x2x3)
6

If the argument is neinteger and positive, gives the mathematical '‘gamma function’ of the
argument- 1.

125
3.32335097

I Binomial

Two-argument form See also ogargument fornfFactorial or Gamma function

In its two-argument form, with positive argumentsells you how many different ways there are of
selecting the number of items specified on the left from the population of items specified on the right.
The orcer of items in each pair is ignored. So if the population of four consisted of the letters AB C
D, the 6 possible combinations of 2 letters would be: AB AC AD BC BD CD. The combination BA
would be regarded as the same as AB.

214 (Number of unique pairs from a population
6 of 4)

3120 (Number of groups of three from a
1140 population of 20)

2161220 (Number of pairs from a population
15 66 190 of 6 12 20 respectively)

VCDNG3" §"4"58S8

VCDNG4" g"4"5"§"5"8";"34" 37" 3:

TABLE1! TABLE2 (TABLEL1 is table of group sizes, TABLE2

3 15 84 is table of populations)

495 3003 18564

Other cases, such as negative or-mbaeger arguments, are also catered for. The various results that
can be obtained are:

Left Right Right - Left Result

Argument Argument
+ve +ve +ve ('RIGHT)+(ILEFT)X!RIGHT - LEFT
+ve +ve -ve 0

+tve -ve -ve (" 1*LEFT)XLEFTILEFT - RIGHT+1

APLX Language Manual 107

-ve +ve +ve 0
-ve -ve +ve (1*RIGHT - LEFT)x(|RIGHT+1)!(|LEFT+1)
-ve -ve -ve 0

£ Matrix inverse

One-argument form See also twargument fornMatrix division

Producs the inverse of the matrix in the rigiand argument. The right argument must be a simple
numeric array. The inverse of a matrix is itself a matrix. It is constructed so that, if-maitiglied

by the original matrix, it gives the identity matrix, th&ithe matrix analogue of unity. In matrix

algebra, an inverse is usually found only for a square matrix. APL further defines a matrix inverse for

a matrix with more rows than columns. In this case the shape of the inverse is the reverse of the shape
of the matrix being inverted, and the expression:

*P[+-00]

still gives the identity matrix. The result of the inverse is the left inverse.

TABLE

o W~
N B~ O
= 0100

8" " 4" O"L"VCDNG
~11 12 .23
A7 772 719
~.32 .70 .02

Matrix multiplication is carried out by the inner product operation (see Inner product).

*$ 4" 487"3"2"3+-004"487"3"2"3
10 (A matrix multiplied by its inverse gives
01 the unit matrix)

If the right argument ta is a scalar, the result is the reciprocal of the argument.

L2
0.5

If the matrix is singular (i.e. does not have an inverse), a DOMARRER will be reported. Note
that matrix inversion is subject to accuracy limitations imposed by the representation of fjmatihg
numbers and the algorithm used to calculate the result. In particular, matrices which are nearly
singular may give resultsf limited accuracy, and small changes to the input can produce very big
changes to the output.

APLX Language Manual 108

. Matrix divide

Two-argument form See also orargument formMatrix inversion

The right and lefhand arguments are conformable simple numeric matrices (arrays of rank 2).
Vectors are treated as one column matrices and scalars are treated as matiaes d 1. The result
is a matrix which, if matrixmultiplied by the righthand argument, would yield the lfand
argument.

X
12
36
910
Y
100
110
111
Z" b
1 2
2 4
6 4

This last operation is the same as

*UET [T+ -006"Z

which is another way of defining the operation.

An important use for matrix divide is to give the least squares solution to thesseiudtineous linear
equations:

B=A+xX for a matrix A and vector B, or columns of
matrix B

The solution is:
D"+t" C

If the matrix division does not have a solution, DOMAIN ERR@ill be reported. Note that matrix
division is subject to accuracy limitations imposed by the representation of flgetingnumbers and
the algorithm used to calculate the result.

APLX Language Manual 109

< Less than

Compares each element in the-ledind argument witthe corresponding element in the rigifand
argument. If an element in the kfand argument is less than the corresponding-right element,
the result of that comparison is 1. Otherwise it is 0. (This operation is affected tasthe comparison
tolerance)

12<1
0

2<12
1

12< 12
0

11725<11326 (Compares each element in a vector with
0001 the corresponding ele ment in a vector of
equal length)

"3< 4 (Compares negative numbers. The number
0 nearer O is considered the greater.)
8 < 2+2+2+2 (The right argument is evaluated
0 before the comparison is made)
TABLEg" 4" 5" §"3"4"5"6"7"8
OCDNG"g" 4" 5"8§"5"5"5" 7" 7"7
TABLE < MABLE (Compares each element in a matrix
110 with the corresponding element in
100 a matrix of equ al size and dimensions)
3<TABLE
000
111
3 < TABLE MABLE (Compares 3 with the elements of the
000000 nested vector)
111111

ij Less than or equal

Compares edcelement in the lefhand argument with the corresponding element in the-hightl
argument. If an element in the kfand argument is less than, or equal to, the corresponding right
hand element, the result of that comparison is 1. Otherwise itT$i8. ¢peration is affected yE v .
the comparison tolerance)

34" "3
0
4" " 34
1
34"ijj" 34
1
33"9"4"7ij33"5"4"g8g"*"""""*Eqorctgu"gcej "gngogpv"

1011 the corresponding ele ment in a vector of

APLX Language Manual 110

equal length)

Is"j i x Eaggrctgu"pgicvkxg" pwod
0 nearer O is considered the greater.)

sttt 4-4-4-4" " " "(The rfight argument is evaluated
1 before the comparison is made)

VCDNG"g"4"5"8§"3"4"5"6"7"38
OCDNG" g"4"5"8§"5"5"5"7"7"7

VCDNG" ijj" OCDNG" """ """ " *Eqorctgu"gcej "gngogpv"
111 with the corresponding element in
110 a matrix of equal size and dimensions)
5ij VCDNG
001
111
5"ij"VCDNG" OCDNG" " """ " """ *Eqolententgofithe5 " y kvj " vjg"g
001111 nested vector)
111111
= Equal

Compares each element in the rigland argument with the corresponding element in thédnaftl
argument and returns 1 if they are equal, O if they atg(Tbis operation is affected ljye vthe
comparison tolerance)

This function works on both numeric and character data. A numeric element is never considered equal
to a character element.

12=12
1
2=12
0
Q' ='Q (Com pares character data)
1
1="1 (Comparisons between numeric and character
0 data are allowed, but always give 0)
11729=11326 (Compares each element in a vect or with
1010 the corresponding element in a vector of
equal length)
'STOAT' = 'TOAST
00001
8 = 2+2+2+2 (The right argument is evaluated
1 before the comparison is made)
VCDNGg4"583"4"5"6"7"8
OCDNGg4"585"5"5"7"7"7
TABLE = MABLE (Compares each element in a matrix
001 with t he corresponding element in
010 a matrix of equal size and dimensions)
3=TABLE
001
000
3 = TABLE MABLE (Compares 3 with the elements of the
001111 nested vector)
000000

See also the (match) function which tests for depth, rank and shape equality as well.

APLX Language Manual 111

If the arguments contain object (or class) references, the elements are considered equal if the referenc
indices are the same, i.e. if they refer to the same entry in APL's int@feaof objects. For internal

objects, this will be true if and only if the elements refer to the same object. Note that different objects
which happen to contain the same properties are not considered equal. For example, if Point is a
simple class witlproperties X and Y:

PTTPGY" Rqkpv

RvVv0zg85" | "RVO[g64

CgRV

DgRVOTENQPG" 3

COTFU
X=63, Y=42

DOTFU
X=63, Y=42

C?RV""" """ 6" Tghgtgpegu"vg"vjg"ucog"qdl gev
1

B=PT 6 Objects are different, but have the same property values
0

For external objects, there might be two references which APL does not know refer to the same object.
Therefore the use of the APL Equals primitive on external objects is not recommended.

J Greater than or equal

Compares each element in the-ledfind argument with the corresponding element in the-hightl
argument. If an element in the lfand argument is greater than, or equal to, the corresponding right
hand element, the result tfat comparison is 1. Otherwise it is 0. (This operation is affectqdeby .

the comparison tolerance)

34"3"3
1

4" 3" 34
0

34" J" 34
1

33"9"4"7"J"33"5"4"8"""""*Eqor c@yetdrgithej "gngogpv"
1110 the corresponding element in a vector of

equal length)

I5Jig i mmmmmnnn x Eagrctgu"pgicvkxg" pwod
1 nearer O is considered the greater.)

"I 4-4-4- 4w yigttkijvtctiwogpv"ku"
1 before the comparison is made)

VCDNG" ¢g"4"5"§"3"4"5"6"7"8

OCDNG"¢g" 4" 5"8§"5"5"5" 7" 7"7

VCDNG" J" OCDNG"""""""""""xFEqgqorctgu"gcej "gngogpvVv"
001 with the corresponding element in
011 a matrix of equal size and dimensions)

5JVCDNG
111
000

5" 3" VCDNG" OCDNG" " """ """ "*Eqorctgu"5"ykvj"vjg"gn
111111 nested vector)

000000

APLX Language Manual 112

> Greater than

Compares each element in the-lefind argument with the corresponding elatrie the righthand
argument. If an element in the l&fand argument is greater than the corresponding-higid
element, the result of that comparison is 1. Otherwise it is 0. (This operation is affegtedviiye
comparison tolerance)

12>1
1
2>12
0
12>12
0
11725>11326 (Compares each element in a vector with
0100 the corresponding element in a vector of
equal length)
"3>74 (Compares negative numbers. The number
1 nearer O is considered the greater.)
8 > 2+2+2+2 (The right argument is evaluated
0 before the comparison is made)
VCDNG"g"4"5"8§"3"4"5"6"7"38
OCDNG" g"4"5"8§"5"5"5"7"7"7
TABLE > MABLE (Compares each element in a matrix
000 with th e corresponding element in
001 a matrix of equal size and dimensions)
3>TABLE
110
000
3 > TABLE MABLE (Compares 3 with the elements of the
110000 nested vector)
000000
I Not equal

Compares each element in the rigland argument with the corresponding element in thénéaft
argument and returns 1 if they are not equal and 0 if they are. (This operation is affected e
comparison tolerance function)

34"1 " 34
0

4" 1 " 34
1

ys)"i")ys)y i x Egogrctgu"ejctcevgt"fcyv
0

33"9"4";i33"5"4"g"""""""*Eqorctgu"gcej"gngogpvVv"
0101 the corresponding element in a vector of

equal length)
)y UVQCV) "1 ")VQCUV)

11110

APLX Language Manual 113

i "4-4-4- gk gttt kijv'tctiwogpv"ku"
0 before the comparison is made)
VCDNG" g"4"5"8§"3"4"5"6"7"8
OCDNG" g"4"5"8§"5"5"5" 7" 7"7
VCDNG" | " OCDNG"""""""""""*xEqorctgu"gcej"gngogpvVv"
110 with the corresponding element in
101 a matrix of equal size and dimensions)
5i VCDNG
110
111
5" "VCDNG" OCDNG" """ """""*Eqorctgu"5"ykvj"vjg"gn
110000 nested vector)
111111
I Depth

One-argument form See also twargument formMatch

Depth is used to indicate the level of nesting. For a simple scalar, depth is 0. For other arrays, the

depth of the array is+ the depth of the item of maximum depth in the array.

P et (Depth of a scalar is 0)
0
P S ek gy yj"gh"c"xgevgt"ku" 3
1
14" 4888 " mrmrnmnmmmmnmnk Earyj"gh"c"ocvtkz"ku"3
1
I') CDE) " 3" 4"5"*45"77+""""*Q0Oczkowdavegar)vj " ku"3-"fg
2
)y CDE) " *4"68*)CDE)"4"5") M) ++
ABC ABC 2 3K (Maximum depth object within the array is
ABC 23K 2 - a matrix)
I) CDE)"*4"68*) CDE)"4"5") M) ++
3 (Overall depth is thus 3)
See alsa@ (shape) to enquire about the shape of an array.
I Match
Two-argument form See also onargument fornrDepth
The match function will test whether its arguments are the same in every redpgth, ank, shape
and corresponding elements. The result is always a scalar 1 or 0.
5 I 5 n " n n n n n n n n n " n " n n n n n n n * V y q n u e C n C t u n C t g n k f g p V k
1
5p .55 rrmmrmmmm o tx yecnect"fggu"pgv"ocvej "

APLX Language Manual 114

6" 903" : "7.28 6 "(Shape is the same but values are not)
0

*5"68S34+15"68S34"""""""*xVyqgq"ocvtkegu"ctg"kfgpyv
1

*5"6"8§S34+175"68S834"""""*Ukorng"ocvtkz"fqgu"pqy
0 vers ion of itself)

XGEg) CDE) ") FGH) " """ " "*Vyqgq"gngogpv"xgevgt"qgh"

VEC
ABC DEF

SVEC (Length 2)
2

XGEI) CDEFGH) """ ®*nmnm s Eggu" pgv"ocvej"vjg"8"g
0 'ABCDEF")

Empty arrays are considered the same only if they have the same type, rank, shape and prototype.

*S2+I))"" oo "*V{rgu"ctg"fkhhgtgpv+
0

X 4T 28241 2" 482 o v iffarnt)j crgu”ct g
0

*2873"4"5+128]4"4886""""*Rtqvgv{rgu"ctg"fkhhgtg
0

The comparisons done by this operation are affectegdebythe comparison tolerance value.

If the arguments contain object (or class) references, the elemenisnaidered equal if the reference
indices are the same, i.e. if they refer to the same entry in APL's internal table of objects. For internal
objects, this will be true if and only if the elements refer to the same object. Note that different objects
which happen to contain the same properties are not considered equal.

IJ Not Match

The Not Match functiom will test whether its arguments are different in any respdepth, rank,
shape or corresponding elements. The result is always a scalar 1 or 0. It is equivalentito T

55t ngkatars aré identivay) g
0

5 .5 rrrmrmmmm e x Jgecnct"fggu"pgv"ocvej "
1

6"903":"I"6"904" ;""" *xyYjcrg"ku"vjg"ucog"dwv"
1

*5"68S34+1J5"68S834"""""""xVyyqtical)cvt kegu"ctg"kfagp
0

*5"6"8§S534+1)] 5"68S534"""""*Ukorng"ocvtkz"fqgu"pgqy
1 version of itself)

XGEg) CDE) ") FGH) " """ " *Vyq"gngogpv"xgevgt"qgh"

VEC
ABC DEF

SVEC (Length 2)
2

XGEWJ) CDEFGH) """t mn s Eggu"pgv"ocvej"vjg"8"g

1 'ABCDEF)

APLX Language Manual 115

The comparisons done by this operation are affectgutythe comparison terance value.

Seer Match for more information on how the comparisons are done.

T Enlist

One-argument form See also twargument formMembership

Enlist produces a vector containing every element from every item in its argument. None of the
propertiesof an array are preservedank, shape or depth. The result is always a simple vector. Note
that empty vectors in the argument do not appear in the result.

Cg*3"4"5+")CDE)"*6" 7" 8+
SA (Length 3 vector contai ning 3 length 3
3 vectors)
§TA (Enlist produces one 9 element vector)
9
Dg4" 48*4"488S6+")FGH)"*4"58S88+"*9": " +
B
12 DEF
34
12 3 789
456
5B
22
B (Enlist produces a 16 element vector,
1234DEF1234567 89 processing the rows first - asravel)
§1B
16

For simple arguments, enlistthe equivalent of the ravel (,) function.

Enlist can be used for selective specification.

*T Cc+gS; " mrrmrmr o on oyt cdgxg+
A

123 456 789
SA (Shape preserved)

3

APLX Language Manual 116

T Membership

Two-argument form See also orargument fornEnlist

Checks on whether a data element exists in the right argument. It returns 1 for each element of the left
argument found in the right argument and O for each element of the left argumfeninbin the
right argument. (This operation is affectediblg vthe comparison tolerance)

The arguments compared need not have the same number of elements, nor need they have the same
number of dimensions. The result has the same shape as the left argumelii&ek) for a
discussion of the criteria which detgine whether two data elements are considered the same.

6"T"6"6"7
1 (1 means 4 is found in 4 4 5)
yC)"T")CDTCECFCDTC)
1 (A'is in ABRACADABRA)
'ABTCECFCDTC)"T")C)

10010101001

(Elements 1 4 6 8 and 11 of the #afind argument occur in the righénd argument.)

yC"D"E)"T")CDEFG)
10101 (The Os represent spaces in'AB C'
which don't occur in '"ABCDE")
34"46"58"1"8"34"3:"46"52"58
111 (Vectors don't need to have the same

number of elements)
VCDNG" g"5"5"§'58789'5" 6

5"8";:;"T"VCDNG
111

VCDNG"T"5"g" ;""" """ """ xpgykeg"vjcv"vjg"tguwny
001 the same shape as the left - hand
001 argument)
001

y6)"T 8§32 xyigtejctcevgt")6)"fqgu
2Momornomomom o n ey g pwogt ke xgevgt " S

PCOGUg) LQJP)")OCT[)")JCTT][)

SNAMES (3 element vector)
3

'™MCT[)T PCOGU"" """ """ """ "sxpPgpg"gqgh"vjg"6"ejctcevgt
0000 elements in NAMES)

*7)YoOCT[)+TPCOGU"""""""""*xVjg"uecnct"eqpvckpkpi"
1 NAMES)

NCOGUTj)OCT[)" """ """ """""""*Vjqug""gngogpvu"qgh"pcoc
010 scalar 'MARY")

)y OCT[)")LKO)")LQJP)"T"PCOGU

101 ('JIM' not found in NAMES)

APLX Language Manual 117
s Find

Find searches fonstances of the left argument within the right argument. A boolean result is returned
with a 1 where the start of the left argument is found in the right argument. The shape of the result is
the same as the shape of the right argument.

) OG)HOME AGAIN' (Find the pattern 'ME' in 'HOME AGAIN')
0010000000
WEEK
SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
) FC[) " s" YGGM" ™ " " " """ "patterh "DAYKiIp WEEK)] g "
000100000
000100000
000010000
000000100
000001000
000100000
000001000
YGGM" s") FC[) " """ " YGEW"-pwrong rarkwp f " kp") F
000

The arguments can be of any rank, patways searches for the whole of the left argument in the right
argument.

*3"4+"*5"6+"sg")UVCTV)"*3"4"5+"*3"4+"*5" 6+
0010 (Search within nes ted vector)
MAT
2345
78910
131415

1
6
1
617 1819 20

1112
16 17

*4" 489" :"34"35+s0Cv"""""*Ugctej "rcvvgtp"ku"c"oc

00000 (1 shows top left corner)
01 000

00000

00000

See also the system functipru for string search operations on vectors.

APLX Language Manual 118

] Unique

One-argument form See also twargument formnion

Unique is used to remove duplicated items from a vector. The resultesaa ®entaining all the
unique items in the argument, in the order in which they first appear. The argument must be a vector
(or scalar).

When the argument is nested, an exact match in data and structure must be found before an item is
removed as a duplite This operation is affected lpye Mhe comparison tolerance.

]) VIG" SWCNKV[" QH" OGTE[" KU" PQV"UVTCKPGF)
THE QUALIYOFMRCSND

] 3"6"39"45"34"6"4"9";;"55"]13"6"39";;"322"323
14172312279933 1100101

]) VIKU)")VJICV)")VJIG)")QVIGT)")QVIGT)")VICP)")VIKU)"
THIS THAT THE OTHER THAN AND

See also the other 'set’ operatignkinion,i Intersection and Without .

] Union

Two-argument form See also onargument formJnique

Union returns all items which can be found in both the left and right argumentsgfibhargument
can be of any shape or rank. The left argument must be a scalar or vector. The result is always a
vector.

The result first contains all the items in the left argument (in the order in which they appear), followed
by all the items found in thright argument but not in the left argument. If a particular item appears
more than once in the left argument, it will also appear more than once in the result. Equally, if a
particular item does not appear in the left argument, but does appear niinitgden the right

argument, it will appear multiple times in the result.

This operation is affected lye Mhe comparison tolerance.

) VIG" SWCNKV[" QH" OGTE[" KU"PQV" UVTCKPGF)])JKR"JQR"FQY
THE QUALITY OF MERCY IS NOT STRAINEDPPWZ

3"6"39"45"34"4"9";;,"55]13"6"39";,;"322"323
14172312279933 1100101

APLX Language Manual 119

) VIKU) ")VJICV)")VJIG)")QVJIGT)|)QVIGT)")VJICP)")VJIKU)")
THIS THAT THE OTHER THAN AND

 Tfkurnc{"*45"65"43+"*87+"*4"48)DNQV) +"|"*87+"*)DNQV)
tjhtgtttttIIEEEQEEMHEHHUHTA 5
TEhtttttttfEhttttttttf"t’ht‘f"ﬁhtttf"T
T T45"65"43T"T3"4"5"6"7T"®#DNT" TDNQVT" T
T"titttttl’tUtlttt!ttttU"TQV'["H;EEIU"T
oo mo S I AR S VAR |
eTetttttettttttttttetttttttttttttttteQ

See also the other 'set’ operatignkinique,~ Without andi Intersection.

T Intersection

Intersection returns a vector containing all those items in the left argument which can also be found in
the right argument. The right argument can be of any shape or rank. The left argumentaracstiae
or vector. The result is always a vector.

The items are returned in the order in which they appear in the left argument. If a particular item
appears more than once in the left argument, it will also appear more than once in the result.

When the eguments are nested, an exact match in data and structure must be found for two items to
be considered identical. This operation is affectedt Bywthe comparison tolerance.

) VIG" SWCNKV[" QH" OGTE["KU"PQV"UVTCKPGF) T) CGKQW)
EUAIOEIOAIE
Cg) V\] KU) ") CPF) n) VJ CV) L L T T T T L T L T T T T I I T L L L I L L L T T T LI R T T I 1]

Ci) V)
6 (No match for the single character T)
Ci)CPF)
6 (No match for any of the three characters A N D)
T]J)CPF)
AND
3"6"39"45"34"4"9";;"5574" 458856
142

See also the other 'set’ operatignkinique,] Union and- Without.

APLX Language Manual 120

~ Not

One-argument form See alsWithout

The right argument must consist only of the numbers 1 or 0. The effecd &6 change each 1to 0
and each O to 1.

~1

~1110 (Each 1 in a vector is changed to 0
0001 and each 0 to 1)

TABLE
111
000
101
~TABLE (Each 1 in a matrix is changed to O
000 and each 0 to 1)
111
010

~ Without

Two-argument form See alsdNot

Without is used to remove items from a vector. Items in its left argument which are found in its right
argument are removed from the result. When the arguments are nested, an exact match in data and
structure musbe found before an item is removed. The right argument can be of any shape of rank.
This operation is affected hye Mhe comparison tolerance.

'ABCDEFGHIJKLMNOPQRSTUVWXYZ'~'AEIOU'
BCDFGHJKLMNPQRSTVWXYZ (Vowels removed)
123456-~246

135 (Even numbers removed)
‘THIS IS TE XT'~""

THISISTEXT (Removal of blanks -ugg"cnug" TFDT+
Cg)VIKU)")CPF)")vacCcv)"""*Vjtgg"gngogpv"pguvgf"x
A~T

THIS AND THAT (No match for the single character T)
A~'AND'

THIS AND THAT (No match for the length three vector)
CiJ)CPF)

VJKU"vJCcy"rrrrnmmmmmmmmmmmnmmmmmx gcvej "hqwpf"hqt " pguv
A~'TH' 'AND'

THIS THAT

See also the other 'set’ opesat:] Unique,] Union andi Intersection.

APLX Language Manual 121

Compares two arguments which must consist only of 0's and 1's. If either or both elements compared
are 1's, the result for that comparison is 1. Otherwise the result for that comparison is 0.

3"1 "3
1
3" T2
1
2" 1" 2
0
2"2"2"3"2"1"3"3"3"3"2"""*Gcej"gngogpv"kp"c"xgeyv
11110 with the corresponding element in a
vector of equal size)
VCDNG" g"5"58§"3"3"3"2"2"2"3"2"3
2"1T"VCDNG" """ mmnmnn vt x Goej"gngogpv"kp"c"ocvt
111 compared with 0)
000
101
\0001010 (The result is all 1's after the
0001111 first 1)
N And

Compares two arguments which must consist only of 0's and 1's. If both elements compared are 1's,
the result for that comparison is 1. Otherwise the result for dmparison is 0.

171
1

170
0

0"0
0

0001171110 (Eachelementin a vectoris compared
00010 with the corresponding element in a
vector of equal size)

VCDNGg5"583"3"3"2"2"2"3"2"3

1I"TABLE (Each element in a matrix is compared
111 with 1)
000
101

NTABLE (Applies " to each row of the matrix.
100 A 1 in the result shows that the

corresponding line contained only 1's)

"N111010101 (There sult is all O's after the first 0)
111000000

APLX Language Manual 122

S Nor

Compares two arguments which must consist only of 0's and 1's. If neither element compared is a 1,
the result for that comparison is 1. Otherwise the result for that comparison is 0.

3" $" 3
0

3" § 2
0

2" S" 2
1

2"2"2"3"2"$"3"3"3"3"2"""*Gcej "gngogpv"kp"c"xgev
00001 with the corresponding element in a

vector of equal size)

VCDNGg5"1368@0'101

2" S" VCDNG" """ """ s Goej"gngogpv" " kp"c"ocvt
000 with 0)
111
010

$ Nand

Compares two arguments which must consist only of 0's and 1's. If either oftdrotnts compared
are 0's, the result for that comparison is 1. Otherwise the result for that comparison is 0.

3"§"3
0

3"§" 2
1

2" §" 2
1

2"2"2"3"3"§"3"3"3"3"2"""*Gcej tigcompargdpv " kp" c" xgev
11101 with the corresponding element in a

vector of equal size)

VCDNG" ¢g"5"5"&§"3"3"3"2"2"2"3"2"3

3"§"VCDNG" """t rnmrnmnmmnt s Geej Xigngogpv"'"kp"c"ocvt
000 compared with 1)
111

010

APLX Language Manual 123

§ Shape of

One-argument form See also twargument formrReshape

Enquires about the shape of each dimension of the data in thédaigthtargument. See alsg¢depth
to enquire about the depth of an array.

u»

9510082742 (A vector has 1 dimension, length.

5 This vector is 5 elements long.)
§ 'SEA scouT' (Counting the space, this vector is
9 9 elements long)
§ 'SEA''sSCoOUT' (Two element nested vector)
2
TABLE (A matrix has two dimensions, height,
13579 which is t he number of rows, and
24680 width, which is the number of
86421 columns)
§ TABLE
35 (This matrix has 3 rows and 5 columns)
§ 501 (A single number or letter is like a
rqgkpv0o"Kv"jcu"pg"fkogpukqgqpu"uq"$§
§ %01 displays no answer, i.e. It returns a
0 vector of size 0 - an empty vector. An empty
vector, being a vector, has a size of 0)
§ Reshape
Two-argument form See also onargument fornShape of
Forms the data in the rightand argument into the 'shape’ specified in thehaftd argument which
must be a simple numeric scalar or vector. Excess elements are ignored. If there are not enough the
data wraps around
4"5"§"3"4"s5"g"7" 8" """ xVjg"pwodgtu"3"vg"8"ctg
123 int 0 2 rows and 3 columns)
456
5"8"8")CDEFGHI JKLMN)""""*Vjg"34"ejctcevgtu")C)"
ABCDEF be formed into 3 rows of 6 columns.
GHIJKL Since there aren't enough differ ent
ABCDEF characters for 3 rows, the last row
repeats the first 6 characters)
4" 4"§"3"4"5"g" 7" rrtxyVjigpwodgtu"3"vg"T7"ctg
12 into 2 rows of 2 columns. The super -
34 fluous number is ignored)
58§)cpbeg)nrrrnnnnmmmmmmmmwx ygykorng"tkijv"ctiwogpyv+

APLX Language Manual 124

ABC
58§)Cbg)nvrrrrnrwnmmmmntxpgyyvgf"tkijv"ctiwogpv"
ABC ABC ABC
Zzgg" "tk C" ykping"pwodgt "ku"rw
§X is asked. Since the number has no dimensions
dimensions, the result is an empty vector)
Zg3sg" o "Vjg"ucog"pwodgt"ku"rwv
X is formed into a 1 - element vector. When
6 displayed, X contains 6, but its
§X size is 1 since it was defined as a
1 vector and has the dimension of length)

To produce an empty array (for example to initialise a variable) the right argument may be any value
and the left argument must cait at least one zero (corresponding to the empty axis or axes of the
result).

§2" 5585

u»

033
§2"678)C)
045

The empty array has a prototype (see Chapter 1) which is the prototype of the right argument.

If, conversely, the right argument is an empty array, the prototype of the right argument occupies each
postion of the result.

32882
0000000000

) n) ? 4 n 5 é)) n n n n " n " n n n n n n n * P q V g n V j g n e q p X g p V k q p " q h
111 to indicate a character empty vector)

111

Since a scalar has no shapescalar can be produced by using an empty vector left arguntest to

zZg*S2+83s8gm " xygr fgnkdgt-cvgn{"etgcvg
A "oU-"WhicH' is' tHet f8réed tb be a

6 Sc alar
§ X

0

We could have equally usédsto produce the scalar (see Zilde).

§ can be used for selective specification.

ALF

ABCDEFGHIJKLMNOPQRSTUVWXYZ
*78§CNH+g)O00000) """ *Hktuv" hdwedgnogpvu"ugnge
ALF the specification)

..... FGHIJKLMNOPQRSTUVWXYZ

APLX Language Manual 125

, Ravel

One-argument form See also twargument fornCatenate, Laminate

Ravel

Ravel converts data into a vector. If applied to a scalar, it preduoaeelement vector. If applied to
a matrix or higher dimensional array, it produces a vector made from the elements in the array.

NUMg" . 5" """ n x5 6" kuyteeggtwvectoy gf " vg"c" 3
§ NUM (An enquiry about the size of NUM
1 produces the answer, 1)
TABLE (TABLE contains 2 5 -row co lumns)
13738
36281
,TABLE (TABLE is converted to a 10 - element
1373836281 vector)
VYKI §4" 68) CDE) "3" 4" *S5+"*4"45S6+")FGH)"*4"48)EC
TWIG (Nested matrix, shape 2 4)

ABC 1 2123

12 DEF CA102.2

34 RT
STWIG
24
,TWIG (Ravel produces a nested vector)
ABC 12 123 12DEF C A 102.2
34 RT
§,TWIG
8

See also the functidn(enlist) which entirely removes nesting.

Ravel with axis

When used in conjunction with an axis specification, ravel can either increase or decreask tfie
its argument. Fractional axis specifications will increase the rank, whilst integer axis specifications
will decrease the rank.

A fractional axis specification must be not more than one less than the first dimension or not greater
than one more #n the last axis. A new axis of length 1 is added in a position governed by the value of
the axis specification. As with other axis operations this is affected by the value @dith T K get

to 1, the default:

TIO

1
OCV§4a" 4556
MAT

12

34

APLX Language Manual 126

[1IMAT (Add a length 1 axis before the first

12 axis)
34

§,[[1IMAT (Shape of result)
122

JL1.1JMAT (Add a length 1 axis between axes 1 and 2)
12
34

§,[1.1]MAT (Shape of result)
212

[2 .8]MAT (Add a length 1 axis after the second axis)
1
2
3
4

§,[2.8]MAT (Shape of result)
221

When used with an integer axis specification ravel will reduce the rank. The axdsencositiguous
and in ascending order.

UCVg4a4"5" 45534

SAT
12
314
56
78
910
1112
SSAT
232
[2 1]SAT (Axes not in ascending order)
AXIS ERROR
J[2 1]SAT
N

With a correctly formed set of axes, the rank of the result is one more than the difference between the
rank of the right argument and the number of axes in the axis specification. The shape may be
predcted by adding the lengths of the axes specified and combining the result with those axes left
unspecified.

J[1 2]SAT (SAT is rank 3, two axes in the
axis specification.)

[CoR NI IO
=
oo hr~N

1112
[2 3]SAT (Rank of result is 1+3 - 2 or 2, a matrix)
123456
7 89101112
J[1 2 3]SAT (Three axes in the specification)
123456789101112 (Rank of resultis 1+3 - 3 or 1, avector)
§,[1 2]SAT (Shape of result from adding lengths of

62 axes 1 and 2, plus length of axis 3)

APLX Language Manual 127

If the axis specification contains an empty vector, the result will have a dimension of length one added
after the lat dimension of the argument.

§.1S2_ucyrnnmrmmmmmnmmwn x Goryv{"xgevqt"czku"urgel
2321 (Dimension added at the end)

Ravel with axis can be used for selective specification:

§(,[1 2]SAT) (The variable SAT as used above)
62
*.,]13"4_UCV+g8"48) CDEFGHI JKLMN)
SAT
AB
CD
EF

GH

1J
KL

, Catenate, Laminate

Two-argument form See also orargument forrRavel

Catenae

Catenate joins data items together.

With singleelement items and vectors, catenate works very simply.

10,66 (2 numbers are joined to form
10 66 a2 - element vector)

10 'MA Y ''1985" (3 vectors of characters are joined
10 MAY 1985 to form an 11 - element vector)

With matrices and other multiimensional arrays, catenate expects the dimension at which the join is
made to be specified. (Spe 'axis'.) If no dimension is specified, the last dimension is assumed.
(commabar) behaves in exactly the same manneresept that the default dimension is the first.
Again, if an axis is specified will use that axis.

The dimension at which items arened must be the same length. Thus if two matrices are joined ‘at’
the columns dimension, the columns must be the same length. If a scalar is joined to a matrix, it's
repeated along the dimension at which the join takes place. The examples belowTagsgrethe
default.

Given the following three matrices called A, B, and D

APLX Language Manual 128

A B D
1234 56 1314151617 18
78910 1112 192021222 324
cgrc.prmrrrmmnnmmnmnnnww s ot epf"D"ctg"l gkpgf"vg"h
C Since no dimension is specified,
123456 the join is at the last dimension
7 89101112 ie the columns. Note that A and
B have the same number of rows.)
C,[1]D (C and D are joined at the
123456 first dimension, ie at the rows.
7 89101112 Note that C and D have the same
1314151617 18 number of columns.)
19 2021 222324
A,[1]0 (A single number is joined to A.
1234 The join is at the row dimensio n.
78910 The number is repeated along that
0000 dimension.)
Laminate

Catenate can only produce a result of the same dimension but of enlarged ahapealimensional
structure becomes arger twedimensional structure. Laminate joins two objects of identical shape
and dimension to form a higher dimensional object.

'ABC',[0.5]'DEF' (Two 3 - element vectors are joined
ABC to forma 2 -row, 3- column matrix.
DEF Note the figure in square brackets

and the fact that it is less than 1)

Laminate creates a new object which has the same shape as the constituent parts é&xeept for
addition of a new dimension.

So in the example above the original vectors are size 3. Their lamination produces a matrix of size 2 3.
The dimension added by laminate is of size 2. This dimension is placed in respect to the old dimension
according to te number in brackets. Withk Qet to 1, the default, if this number is less than 1, the

size 2 dimension goes before the old dimension. So in the example above the 2 goes before the
dimension of size 3, giving a@w 3-column matrix.

If the number in brekets is greater than 1, the 2 goes after the old dimension. In the example below,
1.5 is specified. The new dimension of size 2 therefore goes after the existing dimension of size 3,
giving a 3row 2-column matrix.

'ABC',[1.5]' DEF'
AD
BE
CF

If TK @ setto 0O, then the examples above would be
'ABC',[0.5]'DEF'

and

APLX Language Manual 129

'ABC',[0.5]'DEF"

respectively

r 1st axis catenate

r behaves in the same way as catenate (,), except that if no axis is specified, the FIRST axis is
assumed rather than the last.

N Reverse

Reverses the order of the numbers or letters in thehigid argument. (See atsothe transpose
function.)

N123456
654321

N(12) (34)(56) (The three element ar e reversed, but not
56 3412 their contents)

N 'BOB WON POTS'
STOP NOW BOB

TABLE

12345

67890
N TABLE (When applied to a matrix, it

543 21 reverses the order within each

09876 row. You can use the operator [] -
N[1]TABLE ‘axis' to make the rotation apply

67890 to a different di mension.)

12345

By default reversey . applies to the last dimension. Thus, above, TABLE was reversed about its
columns. The first axis reverde, behaves exactly asbut operates by default about the first axis.

Both will respond in the sameay to the axis operator. The axis operator will depend on the setting of
TKQO

APLX Language Manual 130

N Rotate

The numbers or letters in the righéand argument are shifted by the number of places specified in the
left-hand argument. The shift is to the left if thedéfnd argument is a positive number and to the
right if it's a negative number.

3"N"3"4"5"g"7"g"""""""""xGcej "pwodgt"ogxgu"qgpg"
234561 the left. This displaces the first
number to the end of the line)
5" N") CDEFGHI J)""""""""""*xGcej"ngvvgt"ogxgu"nghyv
DEFGHABC This displaces the first 3 letters
to the end of the line)
TABLE
12345
67890
5" NVCDNG" " """ wxyigpwodgtu"kp"gcej "toaq
45123 3 places to the left. Equivalent to
R T "5N] 4_VCDNGH+
I 4" N) CD@&HF GH (The negative number means a shift
GHABCDEF to the right. All letters are

moved 2 places right)

Similar axis considerations apply to rotate. By defaiapplies to the last diension (as in the
example above. First axis rotake,applies by default to the first dimension, but otherwise behaves
similarly.

Reverse and rotate can be used for selective specification.

k 1st axis rotate

k behaves in the same way as rotate+except that if no axis is specified, the FIRST axis is assumed
rather than the last.

APLX Language Manual 131

h Transpose

Monadic (one-argument) form:

Transpose reverses the order of the axes of an array. Thus the first row of a matrix becomes the first

column
vectors.

Dyadic

and vice versand similarly for arrays of more dimensions. It has no effect on scalars or

TABLE
123
678

n TABLE
16
27
38
n 123
123 (Has no eff ect on a vector)
FCVC"g"34"6";"8§"S"654
§ DATA
1249
§ n DATA
9412
FCVC] 3==4_?2*nNFCVC+] 4==
1111

(two-argument) form:

Changes the order of the rows and columns in th#-hgnd argument according to instructions in the
left-hand argument and selects a subset of the right argument. There must be as many elements in the
left argument as there are dimensions in the right. This operation has most effect when applied to data
which has more than two dimensions. There must be a number in tharefargument for each

dimension of the result. The result can have any rank greater than zero and not greater than the right
argument. Thus for a rank 3 result you must have the nuritl#=Bappearing at least once each in the

left argument. The positions of the values within the left argument correspond to the axes of the right
argument and the values of the left argument refer to the axes of the result.

There are two cases to considene first is where all numbers in the left argument are unique. In this
case all axes (and all elements) of the right argument appear in the result.

TABLE
12
36
910
21 'n TABLE (First element of left argument shows that
139 axis 1 of TABLE becomes axis 2 of result.
e B "Ucog"cu"gqpg"ctiwogpyv
3"4" nVCDNG" " """ " "{rdinates" " Stay B their original
12 order so matrix is unchanged)
36
910
SDATA

APLX Language Manual 132

§s6"3"4nFCcvecrrrrnnnmmnnn Ak 3yyv"tczku"qh"FCVC"dgeqoc
4912 result, 2nd axis of DATA the 1st, etc)

FCVC] 32=5=9_?2*5"3"4nFCVC+]5=9=32_
1

When there are repetitions within the left argument, then the appropriate axes of the right argument
will be mapped together and the rank of the resulthlless than that of the right argument. Thus if
the left argument tais 1 2 1 then axis 1 of the result is formed from axes 1 and 3 of the right
argument. This is done by selecting those elements whose position is the same on those axes. The
operationis selecting diagonals. A simple case is when a rank 1 result is specified (a vector):

TABLE1
12
34
3"3"n"VCDNG3" """ rrmnmmm s Tgyuwnv " ku"vjqug"gngogp
14 column po sitions match - [L;1]and [2;2])
SDATA
1249
§3"4"3nFCVC
94
FCVC] 6=5=6_7?2*3"4"3nFCVC+] 6=5_
1

If the axes that are being mapped together are of different lengths, those positions that areaz@mmon
only as many as the length of the shortest axis.

Transpose can be used in selective specification.

H First

One-argument form See also twargument fornTake

First selects the first item of its argument. When the argument is an empty arragidinss the
prototype of the array.

Ha" 4586
1
Cyg*) COUOHTGGOCP) +" 57" 37222
A
A.S.FREEMAN 35 15000
s8A
3
[O =] S R kvgo"gh"C"ku"c"v
A.S .FREEMAN
5 A
11

VCDNGG4" 48*4" 4586+"*87+"*)VGZV) +"*) GXGP" 0QTG" VG

APLX Language Manual 133

TABLE (2 row, 2 column nested array)
12 12345
34
TEXT EVEN MORE TEXT
Hvae (First item is a 2 by 2 numeric matrix)
12
34
§ HABLE
22

First can be used in selective specification.

HTake

Two-argument form See also orargument fornfirst

The lefthand argument of take spfies how many elements are to be selected from thelragid
argument in each of its dimensions. If the-ledind argument is positive, the elements are selected
from the start of the appropriate dimension, if negative, from the end. The result &dlselected.

5 H") COUOHTGGOCP)

AS.F

1 9"H") COUOHTGGOCP)
FREEMAN

5" H" 44" 4" 3; " 34
22219

1 3" A" 44" 4"3; " 34
12

NKUVg*4"458S6+"*S532+

§ HIST (Note that first removes dep th)
22

§3ANKUyY" " x yomg"fgqggu"pgv"chhgev" vj
1

If the left argument specifies more elements than the right argument contains, all elements are selectec
and the prototype of the array is added for each missergent:
7"H"62"; 4" 33
40921100
1 7H62"; 4" 33
00409211

If the right argument is a matrix, the first number in the left argument specifies the number of rows to
be selected, and the second, the number of columns

'S" 34

w»

VCDNG"g"6"5"
TABLE

2
5
8

oO~NAPR
H
R ©oow

1

APLX Language Manual 134

4" 5" H"VCDNG" """ """ """ x ygngevu"cnn"vjtgg"eqnw
123 first two rows)
456

I 3"5"H" VCDNG""""""""""""*Jgngevu"cnn"vjtgg"eqnw
101112 last row)

3"4" A" VCDNG" " """ """ x Jygpngevu"tgy"3."eqgnwopu
12

The overtake operation on matrices or higher dimenkamnays uses the prototype of the first
element of each row already in existence to extend rows. New rows use the array prototype.

MAT
1A
B2
SMAT
22
5" 5HOCV
1A0 (Extension of row 1 uses row 1 prototype)
B2 (Row 2 prototype is a blank character)
000 (Row 3 is new and uses the array prototype)

Similar considerations apply to higher dimensiorags. Take can be used for selective specification.

Take used with axis

Take used with the axis operator will select only from the axes specified. Any axis not specified by the
axis operator remains unchanged. Each successive element of the left aigdioatgs how many
items to take from the corresponding axis within the axis specification (and from which end).

MAT
1234
5678
9101112
4H] 3_oOoCcy"mrrmrmmn ok \yomg " viithgfirdtkt uv" 4" ogodg
1234 dimension, the rows, and leave the number
5678 of columns unchanged)
5H] 4 _OCcy""mrmmnmmmm kgt yy" 5" eqgnwopu. "Vvjg"u
123
5 67
91011

Overtake will follow the same rules as for take (see above).

TABLE
1A2
B34
5] 3_VCDNG
1A2 (New row uses array prototype)
B34
000

6H] 4_VCDNG
1A20 (Prototype of row 2 is the blank
B34 character)

APLX Language Manual 135

HDrop

The number of elements specified in the-ledhd argument are dropped from the rigahd
argument. If thdeft-hand argument is positive, the elements are dropped from thetedtend, if
negative, from the rightand end. The result is the original data without the dropped elements.

6" H") COUOHTGGOCP) """ """ " * Ftqru"vjg"hktuv"6"ejct
FREEMAN

| 8"H®") COUOHTGGOCP) """ """ *Ftqgqru"vjg"ncuv"8"ejctec
A.S.F

5"H" 44" 4" 3, "34" """ s gt qru"vjg"hktuv"5"pwod
12

1 3"H" 44" 4" 3; "34"" """ """ "sEtqgqru"vjg"ncuv"pwodgt +
22219

If the left argument specifies more elements than the right argument contains, all elements are
dropped:

7"H" 62" ;4" 33
The result is in fact an empty vector, as we see if we gpalythe result:

S§7"H"62"; 4" 33
0

If the right argument ia matrix, the first number in the left argument specifies the number of rows to
be dropped, and the second, the number of columns:

VCDNGII gu 6” 5|| éll Sn 34

TABLE
123
456
789
101112
4" 2"#H#"VCDNG" " " nrnmnmmnmt oy Bt gru"vjg"hktuv"vyq"
789 columns)
101112
I 5"2"H" VCDNG" """ """ """ """« Ftqgqru"vjg"ncuv"vjtgg'
123
3"4"H" VCDNG" " " "™ """ " Ke'first'tow ard the firstt " v
6 two columns)
9
12

Similar considerations apply to higher dimension arrays. Drop may be used for selective specification.

Drop with axis

Drop used with the axis operator wdllop only from the axes specified. Any axis not specified by the
axis operator remains unchanged. Each successive element of the left argument indicates how many
items to drop from the corresponding axis within the axis specification (and from which end).

APLX Language Manual 136

MAT
1234
5678
9101112

4H] 3_oCcy rnrnmrmmnmmnmmnmtx gt gr"vjg"hktuv"4"ogodg
9101112 dimension, the rows, and leave the number

of columns unchanged)

5H] 4_ocCcy"rnrrrrrnmmmmnmnmn s ptqgr"hktuv"5"egnwopu. "
4
8
12

] Enclose

One-argument form See also twargument fornPartition

Enclose produces a scalar frashargument. If the argument is already a simple scalar the result is
also a simple scalar, otherwise it has a depth of one greater than the argument.

VCDNGg4"58S8

TABLE
123
456
I VCDNG
1
§ JTABLE (Enclose produces a scalar)
(Shape of a scalar is an empty vector)
8§ S TABLE
0 (Rank of scalar is 0)
1] VCDNG
2 (Depth has been increased by 1)

Enclose with axis

When used with an axis specification, enclose will only enclose the axes indicated within the axis
specification.

jl13_VCDNG" """ "m®rnmnmmmmm s Gpenqug" Wns) "tgyu"."ng
142536

§ J[1]TABLE (Result is length 3 vector)
3

I1j]3_VvVCDNG" """ mnmmnmmmmnx pgryvj "kpetgcugf"d{"3+
2

jl14_VCDNG"" "t nmrmmmmmn it Gpenqug"vjg""egnwopu""
123456

§ J[2]TABLE (Result is length 2 vector)
2

I1j]4_VCDNG" """ mnmmnmmmmmx pgryvj "kpetgcugf"d{"3+

2

APLX Language Manual 137

Enclose with axis can also be used to carry out a rearrangement of its argument (segaisposg
by using a non ascending set of axes in the axis specification. Including all the axes in ascending order
is equivalent to enclose.

§f13"4_VCDNG" """ mnnrnmmm*syycog"cu"] VCDNGH+
EMPTY
§ jl2 1]TABLE (Scalar result)
EMPTY
iji14"3_VCDNG" """ mrnnmmmrnxQOtfgt"qgh"czgu"tgxgtugf
14 (Columns become rows within the first item
25 of the result)

36

When the axis specification is an ptyivector, enclose with axis has no effect on a simple array, but
with nonsimple arguments increases the depth of the argument by 1. Each item of the argument is
enclosed, but the overall shape is not altered.

STABLE (TABLE , as above)
23
I VCDNG" " " mnmmmmnmmmnmmmwm s pgrvij "3+
1
§]] S2_VCDNG" """ """ rnmnm s Gpenqug"ykvj "gorv{"xgev
23 specification has no effect)
17]S2 _VCDNG
1
VCDg4" 48*S8S5+"*S85+") CDE) ") FG)
TAB (Nested matrix)
123123
ABC DE
STAB (Shape 2 2)
22
§j] S2_vcp e nnm e m s Gnenqug"ykvj"gorv{"xgev
22 specification preserves shape)
I VCD
2
1j]1S2_vcprnmrmrmmn ke Knpetgcecugu"fgrvijo+
3

] Partition (with axis)

Two-argument form See also orargument fornmEnclose

Partition will divide its right argument into an array of vectors according to the specification contained
in its left argument. The left argument must be a scalar or a simple vector of integers that are either
zero or positive, with one element for every item in tgbtrargument. A new item is created in the

result whenever the corresponding element in the left argument is greater than its predecessor.
Elements in the left argument that are zero cause the corresponding items in the right argument to be
omitted. If usd without an axis specification, partition will select along the last axis. When used with
an axis specification, selection takes place along the nominated axis.

3"3"4"4"5"573"4"5"6"7"8
123456 (Result is 3 elemen t vector, with each

APLX Language Manual 138

§3" 3" 4" 4"5"573"4"5"6"7"8"gngogpv"'c"ngpivj"4" xge\
3

3"3"2"3"3"273"4"5"6"7"8
12 45 (Do not select 3rd and 6th elements)

§3"3"2"3"3"273"4"5"6"7"8

2
OCV§5"58) ECVUCVOCV)
MAT
CAT
SAT
MAT
SMAT
33
3"2"3joCcyn kBt gr"vjgtugeqpf"egnwop
CT
ST
MT

§3" 2" 3] OCV
32 (Result is nested array)
§A3" 2" 3j] OCV

el
e

I OCV

13" 2" 3] OCV
2 (Depth increased by 1)
3"2"3]70CV

CT
ST
MT
3"2"37]4_ocynrrrnrrmmnmnntxyrgekhkecvkgp"gh""ncuv
CT as no axis specification)
ST
MT
3"2"37]3_ocyrrrnmrmmnmnnmxyrgekhkecvkgp"gh""hktu
CAT selection by first axis - rows)
MAT
§3"2"3j]3_0cCV
23
3"4"55o0Ccyrrrrrnmmnmnmnn ity Ft gevg"c"pgy"gngogpv?®"®
CAT
SAT
MAT
§3 " 4 "NBAT
33
ocyr ok @ Giviplekmattix) gr vij ot 3"
1
13"4"57oCcyr e x \Jig"rcectvkwkanpsted h" OCV™" k
2 matrix)
3"4" 47 0CVv" "ttt Y (MAT' s pdrtitioned into two columns,
CAT the first with one element, the second
S AT with two)
M AT
§3" 4" 47 OCV
32

§A3" 4" 4] OCV

APLX Language Manual 139

K Disclose

One-argument form See also twa@argument fornPick

Disclose will produce an array made up of the items in its right argument. If its argument is a scalar,
then the result is the array that is within that scalar, andjsridrm, disclose will reverse the effect of
enclose. However, if the argument to disclose is a nested vector, the result will be a matrix.

VCDNGg4" 55858

§ JTABLE (Result of enclose is a scalar)
(Shape of a scalar is an empty vector)
§ KTABLE (Disclose reverses the enclosure)

23

The shape of the result of disclose is a combination of the shape of the right arfplioeat by the
shape of thé&ems in the right argument.

K*3"4"5+"*g"7"8+" """ *xyJyjcrg"qh"ctiwogpv"ku"
123 within the argument is 3)
456

§K1L23)(456) (Shape of result is 2 3)
23

In general, each item in the argument of disclose must be of theraakyjer be a scalar. If some of

the items are scalar or have different shapes, they will be padded to a shape that matches the greatest
length along each axis of all of the itemghe argument. The prototype of each item in the right
argument will be used as the fill item.

K*3"4+"*5"g" 7+t s Hktuv"gngogpv"ngpivj"
120 (First element padded to length 3)
345

K*3"4"5+"*)ycCcb)+""""*""m"""*Hktuv"gngogpv"ngpivj"
123
AB (Second element padded to length 3)

This can be a simple way to make a matrix from a series of different length vectors (but see also
TDQZ

K)LQG)")LCOGU)")LGTGOJ[)
JOE

JAMES

JEREMY

Disclose with axis

When used with an axis specification, disclose will combine the shape of the right argument and the
shape of the items within the right argument according to the axis specification. The overall shape of
the result is formed from the combinatiointioe shapes as before, but the axis specification will

indicate which axis or axes in the result will be formed from the shape of the items within the right
argument.

APLX Language Manual 140

NUMg * 3" 4" 5+"*6"7"8+"*9" ", +

K] 3_Pwouy"""nmnnmmrrnummmnnntsGngogpvu"qh*"vjg"xgevq
147 argument form rows in the result
258 ith element becomes ith row)
36 9

K] 4_PwoOuy®" " mrmmnmmmmnmxgyj"gngogpv"dgeqgogu®" Kk
123
456
789

The same rules will apply for higher dimensional arrays. Thus when forming a rank 3 array from a
vector of matrices:

FCVCg*4"+538%8 58) CDEFGH) +

DATA (Length 2 vector of shape 2 3 matrices)
123 ABC
456 DEF

K]3"4_FcCcvcrnnnmmmnnmmmmnn s Hetuv"cpf"ugeqgqpf"czgu
1A from shap e of elements of right argument.
2B ith plane, jth row from ith row jth col
3C of each element of right argument)
4D
5E
6F

K]3"5_FcCcvcrrnnmmmnmmmmmnn s Htuv cepf"vjktf"czgu®
123 of elements of right argument.
ABC ith plane, jth column from ith row jth col

of each element of right argument)

456
DEF

K]4"5_FcCcvcrnnrnmrmnnmmmnmnnsxygeqpf"cpf"vjktf"czgu
123 of elements of right argument.
456 ith row jth column from ith row jth column

of each element of right argument)

ABC
DEF

Disclose with axis can also be used to carry out a rearrangement of its arguments {see also
transpose) by using a non ascending set of axes in the axis specification.

K]5"4_FcCcvcrrnnmrnmnmmnmnnsxygeqpf"cpf"vjktf*"czgu
14 from shape of elements of right argument.
25 jth row ith column from ith row jth
36 column of each element of right argument)
AD
BE

CF

APLX Language Manual 141

K Pick

Two-argument form See also ora@argumentiorm Disclose

Pick is used to select an item from its right argument according to the specification contained in its left
argument. Each element in the left argument is used to specify successively deeper selections in the
right argument. At each level epecification the element in the left argument being used must be of

the appropriate shapea single number for a vector, a two element vector for a matrix and so on.

AgJ) HKTUV) ") UGEQPF) ") VJKTF)

SA (Three element vector)
3

4Kctrrrnmmmmnmmmmm e wx Rkem" vigtugeqpf"gngogp
SECOND

4" 5KCc i nmmmmn e x Rkem" vijgtvjktf"gngogpyv
C element)

Cg*3")HKTUV) +"*4")UGEQPF) +"*5")VJIKTF) +

SA (Three element vector, with each element
3 a two element vector)

5KC
3THIRD (Third element selected)

5" 4KC
THIRD (Second element of third element selected)

5" 4" 3KC
T (First element of second element of third

element)

When operating on arrays with two or more dimensions, care must be taken to ensure that the left
argument te is correctly formed.

VCDNGg4" 458*S5+")PCOGU) "*4" 486" 7"8"9+"*5"58) CDEF
TABLE
123 NAMES

45 ABC
67 DEF
GHI

Selection of one of the outermost items from TABLE must be by means of a two element vector
(given the shape of TABLE is 2 2), but this selection item must be formed akatsdndicate that it
refers to the outmost layer.

12KVCDNG
RANK ERROR
3" 4KVCDNG

AN

In the example above, the left argument to pick is interpreted as ‘first element from outermost layer
then 'second element from next layer deep'. A correctly formed left argument is:

*7 3" 4+KVCDNG
NAMES

APLX Language Manual 142

*3"4+" 4KVCDNG

A (Select row 1 column 2, then element 2)
*4"3+"*4" 4+KVCDNG" """ """ *Ugngev"tgy"4"egnwop" 3.
7 column 2)

Pick may be used with selective specification, in which case the whole array picked will be replaced
by the object being assigned.

I Index

Thel (‘index’) function selects from the array which forms its right argument according to the index
array formedas its left argument. The left argument cannot be of depth greater than 2. Each element in
the left argument addresses successive dimensions of the right argument and multiple index selections
may be formed by creating a suitably nested vector. The diomenspecified in the left argument are

used in the same order as with ghieinction, that is columns last, preceded by rows and so on. Index

is affected by the Index OrigihT K Q+ 0

4" "3"4"5"g"" 7" v rrrnrnmtx Jgecncet ~hoglydnecgevqgt " kpfg
2 dimension)

*7 5" 6 +R3B5 (Nested scalar for multiple index)
34

VCDg§g4" 758532

TAB
12345
6 78910

4" 5" "VCD
8

4" *4"5+}"vVvcpr"rrrrrrrrnmtxy ygeqpf "gngogpv'"qh'vjg"
78 is the enclosed vector 2 3)

*3"4+"*4" 5+ vcb"""rrrrr " pguvgf"4”"gngogpv"xgevq
23 index. Result is rows 1 2 and columns
78 23)

If the index function is given an empty left argument, and a scalar right argument, it will return the
scalar as the result.

*$2+1 59
37

Index with axis

Index can be used with an axis specification. In this case the left argumeapphés to those axes
specified. Other axes are not indexed.

4113_vcprrrrnnmmmmmnmmmnx ygngev"vjg'ugegqgpf"ogod
678910 dimension - the rows)

*74"5+]14_vcD"rrrrnnmmmnx g o thiedmémbergdfthege gpf " c p
23 second dimension - the columns)

78

APLX Language Manual 143

N Grade up

Grade up enables numbers or characters to be sorted into ascending order. The arguments to grade uy
must be simple and not mixed. Thghi argument is a simple numeric or character array containing
the data you want to sort. A left argument may be used to specify a sort sequence for character arrays.

The result is a vector which identifies elements by their position in the originaFaatanatrices or
higher dimensional arrays, the sort is carried out on the first dimension. The result of grade up can be
used to index the right argument into ascending ortlisraffected byr K Qthe index origin.

Identical elements or subarrays within the right argument will have the same relative positions in the
result.

One-argument form

With the oneargument form, a numeric argument is sorted into ascending order. tfidvacter
argumentr C ¢he "atomic vector') determines sorting order. It puts numeric characters before
alphabetic characters and uses normal alphabetic order. So '1' is before (or less than) ‘A, and 'A' is
before 'Z'.

N138122 4 (Produces vector showing ranking:
4213 4th number is first, 2nd number next)
(138122 4)[4 21 3] (Ranking order is used as an index
4813122 to put numbers in ascending order)
NZAMBIA' (Produces vector showing ranking.
264531 ‘A’ in position 2 is first)
)VCODKC)] n)y\cobKgc) _"""""*Vjg"tcpmkpi"qtfgt"hgwp
AABIMZ is used as an index to
put the characters in order)
TABLE (A3 - row 3 - column matrix of names)
BOB
ALF
ZAK
NTABLE (Ranks the names in alpha order)
21 3 (By row)
TAB
456 (Sorts TAB by row)
113
112
NTAB
321
vcb] nvcp=_"""""rrnmmnmnntx yyCD" kp"cuegpf kpi "qgtfagt
112
113
456
ARRAY (Three dimensional array is sorted by the
234 first dimensions, the planes)
010

FNgN
s
o W

APLX Language Manual 144

112
101112
ARRA/[DARRAY;;] (ARRAY in ascending order by planes)

NAMES (Three dimensional character array)
JOE
DOE

BOB
JONES

BOB
ZWART
NNAMES
231
PCOGU] DPCOGU==_
BOB
JONES

BOB
ZWART

JOE
DOE

Two argument form

The two argument form can only be used with simple charaoteys. The left argument specifies the
collation order you want to use.

V[ZYXWVUTSRQPONMLKJI HGFEDC) "N")\ CODKC)
135426 (Collation order reversed. Compare
result with the e xample above)

The system variablge C containing the alphabet, and the functioare used to reverse the alphabet in
the next example:

TABLE
BOB
ALF
ZAK
*NTC+NVCDNG
312 (Comp are with example above)

When the left argument is a character matrix (or higher dimension array), more sophisticated sorts can
be devised. When elements of the right argument are found in the left argument they are assigned a
priority depending on their @tion in the collation array. For this purpose, the last axis of the

collating array is deemed to have most significance, and the first the least significance.

APLX Language Manual 145

If elements in the right argument are not present in the collating array, they given prarifiisey
were found at the end of the collating array and in the order of their occurrence in the unsorted right
argument.

A common use of a matrix collation sequence is to carry out aicseesitive sort. In the following
example, lowercase charageare used in the array to be sorted. (Some implementations of APLX
will use underlined letters instead of lowercase letters).

DATA
ABLE
aBLE
ACRE
ABEL
aBEL
ACES
COLL
ABCDEFGHIJKLMIOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz
EQNNRFCVC
451263
FCVC] EQNNRNFCVC=
ABEL
aBEL
ABLE
aBLE
ACES
ACRE

The collation array COLL contains lowercase characters indtsnserow. When the variable DATA

is sorted, the first sort is by column order in the collation array. Thus rows in the matrix being sorted
beginning with the letter ‘A’ or 'a’ will be given highest priority, followed by 'B' or ‘b’ and so on for
successiveolumns within the array being sorted. The next sort is by the rows of the collation matrix,
and 'A'is given a higher priority than 'a’ and so on. Contrast the example above, with a similar sort
using a one dimensional (vector) collation sequence:

CoLL1

AaBbCcDdEeFfGgHhIiJjKKLIMMNNOoPpQgRrSsTtUUVVWwWXxYyZz
FCVC] EQNN3NDFCVC=_

ABEL

ABLE

ACES

ACRE

aBEL

aBLE

Here, all rows beginning with 'A" are given a higher priority to rows beginnitig'a’.

APLX Language Manual 146

0 Grade down

Grade down enables numbers or characters to be sorted into descending order. The arguments to grac
down must be simple and not mixed. The right argument is a simple numeric or character array
containing the data you want tors left argument may be used to specify a collation sequence for
character arrays.

The result is a vector which identifies elements by their position in the original data. For matrices or
higher dimensional arrays, the sort is carried out on the firersion. The result of grade down can
then be used to index the right argument into descending origeaffected byl K Qthe index origin.

Identical elements or subarrays within the right argument will have the same relative positions in the
result.

One-argument form

With the oneargument form, a numeric argument is sorted into descending order. Witnacter
argumentr C ghe 'atomic vector’) determines sorting order. It puts numeric characters before
alphabetic characters and uses normal alphabetic order. So '1' is before (or less than) 'A’, and 'A'is
before 'Z'.

01381224 (Produces vector showing ranking: 3rd
3124 number is biggest, 1st is next etc)
(138122 4)[3124] (Ranking order used as index to put
1221384 numbers in descending order)
0'ABRACADABRA' (Produces vector showing ranking: 'R’
3107529146811 in position 3 is 'biggest’, etc)
MG[g0) CDTCECFCDTC)""""""*Vjg"tcpmkpi "xgevqgt"ku"
'ABRACADABRA'KEY] and is used as an index to put the
RRDCBBAAAAA original data into descending order)
TABLE (A3 -row 3 - column matrix)
BOB
ALF
ZAK
0 TABLE (Ranks the names in descend ing
312 alphabetic order)
TAB
456 (Sorts TAB by row)
113
112
OTAB
123
vcb]jovcb=_"nnmrrmrnmmnmnntx yCD" kp"fguegpfkpi "qtfg
456
113
112
ARRAY (Three dimensional array is sorted by the
234 first dimensions, the planes)
010
112

APLX Language Manual 147

113
6

ARRAY[PARRAY:;;] (ARRAY in descending order, by planes)

456

112
101112

NAMES (Three dimensional character array)
JOE
DOE

BOB
JONES

BOB
ZWART

ONAMES
132

PCOGU] 6PCOGU==_
JOE
DOE

BOB
ZWART

BOB
JONES

Two-argument form

The two argument form can only be used with simple characrays. The left argument specifies the
collation order you want to use.

YV [ZYXWVUTSRQPONMLKJI HGFEDC) "0) CDTCECFCDTC)
1468112957310 (Collation order reversed. Compare
results wit h the example above)

The system variable C containing the alphabet, and the functionare used to reverse the alphabet
in the next example.

TABLE
BOB
ALF
ZAK
*NTC+0VCDNG
213 (Compare with the example above)

When the left argument is a character matrix (or higher dimension array), more sophisticated sorts can
be devised. When elements of the right argument are found in the left argument they are assigned a
priority dependingpn their position in the collation array. For this purpose, the last axis of the

collating array is deemed to have most significance, and the first the least significance.

APLX Language Manual 148

If elements in the right argument are not present in the collating array, theypgivaties as if they
were found at the end of the collating array and in the order of their occurrence in the unsorted right
argument.

A common use of a matrix collation sequence is to carry out aicseesitive sort. In the following
example, lower &se characters are used in the array to be sorted. (Some implementations of APLX
will use underlined letters instead of lowercase letters).

DATA
ABLE
aBLE
ACRE
ABEL
aBEL
ACES
COLL
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz
EQNNOFCVC
362154
FCVC] EQNNOFCVC=
ACRE
ACES
aBLE
ABLE
aBEL
ABEL

The collation array COLL places lower case chanacin the second row of the collation matrix.

When the variable DATA is sorted, the first sort is by column order in the collation array. Thus rows
in the matrix being sorted beginning with the letter ‘A" or 'a’ will be given highest priority, followed by
'‘B' or 'b" and so on for successive columns within the array being sorted. The next sort is by the rows
of the collation matrix, and 'A' is given a higher priority than 'a’ and so on. Contrast the example
above, with a similar sort using a one dimensiguettor) collation sequence:

CoLL1
AaBbCcDdEeFfGgHhIiJjKKLIMMNNOoPpQgRrSsTtUUVVWwWXxYyZz
EQNN3OFCVC
253614
FCVC] EQNN3OFCVC=_
aBLE
aBEL
ACRE
ACES
ABLE
ABH.

APLX Language Manual 149

Vg

| Encode

Represents a value in a given number system, for example, represents inches as yards, feet and inche

The lefthand argument gives the base, or bases of the number system you want to use;htaedight
argument is the value to be encodedth arguments must be simple numeric arrays.

To convert 75 inches to yards feet and inches:

3982"5"34"jr g7 v xyVigtg"ctg"34"kpejgu"vg
203 to the yard, 1760 yards to a mile)

Note: Sincehree numbers were required in the result (yards, feet and inches) three numbers were
given in the left argument. If you don't put sufficient numbers in the left argument, you lose some of
the result:

5" 34" "97
03

You can be sure ofat losing any of the result by making the first element of the left argument a
number greater than the number to be encoded.

322222"341 97
63

To express the basd number 100 in basks (hexadecimal)

38" 38"38"38"1322
0064

In addition, the right argument does not have to be an integer, and indaede a handy way to
separate the fractional part of a number from the integer part.

3982"5"341 9705

2033
2" 31 9705" " " """ "(The Setohd"elerhent of the left argument
750.3 being 1 ensures that all of the right
argument except the fractional part
appears in the first elemen t of the result)

Although the encode function is defined for scalar right arguments, it is possible to use encode with
any array as the right argument. In this case the encode operation is applied to each element of the
right argument to produce a vectesult for each element. Similarly, if the left argumernit &f not a

vector, but a higher dimensional array, then each base vector across the first axis of the left argument
is applied to obtain the representation of each element of the right argumeshaje of the result is

the same as the shape generated by an outer product operatmGHVCTI +. § TKI JVCTI 0

To convert a series of values expressed as decimal numbers to their binary (base 2) equivalent.

APLX Language Manual 150

4" 4" 4" 4" 4" "3"4"5"6"7
0000 0 (The vector left argument is applied to
00000 each element of the right argument. The
00011 results are displayed along the first
01100 a xis (rows) of the result)
10101

L Decode

Finds the value in units of a number represented in a particular number system, for example, how
many inches are in one yard. In general, the result is a scalar value generated from a vector
representation of a value.

The left argument contairiee base (or bases) of the number system being used. The right argument is
a value represented in the given number system. A scalar left argument is treated as if it is a vector
which matches the length of the right argument. Similarly, a scalar rigitharg is extended to

match the length of the left argument.

To reduce the vector 3 2 6 9 representing, say, the readings of the separate dials on a meter, to a singl
number:

10 L"5"4mgr;nrr gkt yjgrdeugthqt"vjg”
3269

To convert a number represented in octal (base 8) to decimal:

: n L n 5 n 3 n n n n n n n n n " n n n n n n n * P q V g n V j C V n C u n d g h q t g X n V
25 is avec tor)

To reduce 1 yard 2 feet 8 inches to inches:

3982"5"34"L"3"4" ;" x34" ku"vjgtdcug"hgt"eqp
68 inches, 3 is the base for converting
yards to feet. Fo r 1760 see the note
below)

If both arguments tq are vectors, they must contain the same number of elements. To make the left
hand argument up to the same length as the right, an extra number was included: 1 Vétiseon
factor for miles to yards) is irrelevant to the conversion of yards feet and inches to inches, and any
other sufficiently large value could have been used instead.

4" 44" "3 mmmmmx i g"3"ku"gzvgpfgf"vg"o
7 the left argument)

To reduce 2 pounds 15 shillings 6 pence and 3 farthings to farthings (4 farthings to one penny, 12
pence one shilling, 20 shillings one pound):

APLX Language Manual 151

2"42"34"6"L"4"37"8"5
2667

Again not the first number in the leftand argument. Its only purpose is to make the arguments the
same length.

The more general form of decode allows both left and right arguments to be numeric arrays. When the
left argument is an array of rank 2 or more, itteams a set of vectors which describe different bases

to be used independently. Each base lies along the last axis of the left argument, and is applied to eact
of the vectors on the first axis of the right argumeritllows the same rules as inner product, the

length of the last axis of the left argument must match the length of the first axis of the right argument,
and the shape of the result is given by deleting the two inner axes and joining the others in order.

To convert a matrix of yards, feet and inches to inches:

TABLE
111 (The numbers to be decoded lie along the
203 first axis, so the first value is 1 yard
018 2 feet 0 inches and so on)
1760312 L" VCDNG"""""""*Vjg"nghv"ctiwogpv"ku"crrnk
60 37 80 column of the right)

S Picture format

Displays the numbers in the right argument according to the instructions in the left argument.

Numeric left argument

§ canbe used in a similar way to the tvaogument form o o(See0 for more information and
examples.) The main differences are:

(a) If a number is too big for the field specifiet, are displayed.

(b) If the left argument is a single number, it specififessiumber of characters in the field and no
decimals are displayed.

(c) If the left argument consists of the numbers 1 or 2, only the absolute value of the data will be
displayed.

(d) If any field width is specified to be 0, the result will not contair dmdumn.

Character left argument

With s you can also define the way the data is to look by using editing symbols to build up the pattern
you require. This 'picture’ is enclosed in single quotes and forms tHatadtargument. Each number

APLX Language Manual 152

in the righthand argument is displayed in the wayided by the picture. If the right argument is an
array, each field in the specification is taken to apply to all of the relevant columns.

You can have one picture for all the numbers on the right, or several pictures, one for each number. If
several pictugs are defined, each one must be separated by a semicolon (;). If there is nothing between
two semicolons, the previous picture repeats. Any valid APL character except ; may appear in the left
argument.

Numeric Field Specification (9 2Z)

The main editingymnbols are Z and 9. If a 9 is used in the picture, a digit is displayed at that position;

if the position is blank, a zero is displayed. Z causes a digit, if present, to be displayed, but it does not
display leading zeros. If no 9 is found in a picturdl,Zaro suppression is assumed, but a single

leading 9, or a 9 with Z on either side of it has the special effect of forcing a display only if there is

any significance to the right of the 9. More than one leading or embedded 9 causes a DOMAIN
ERROR. A spee in the picture causes a corresponding space in the number and a point . in the picture
inserts a decimal point if required by the format specification. Absence of a decimal point means that
none will be printed.

) iiii)"8"323"37
01010015 (Each number fills 4 positions - no
space between numbers was allowed for)
) ") "8"323"37
0101 0015 (The space in the picture is put at the

beginning of each number. So if we
represent spaces by dots, we have:

.0101.0015)
)VVvVvy)y "8 323"37"2"32
101 15 10 (Z suppresses non - significant zeros)
y\V\\;0; ;") "8§"33""3403""35""04

11.00 12.10 13.00 0.20 (Three leading zeros are suppressed,
but a zero in the digits position is
displayed. The point is inserted)

)yvVAv\y; 0V)"8§"32"05"025"2"022; "0225
10.00 0.30 0.03 0.01 (The 4th and 6th numbers do not print)

A single or embedded residue symblpl behaves exactly like a leading or emtbed 9 except that it
forces significance in the field immediately to the right. Only pneay be used, and no 9s.

VAV \V ~0V\V)"§32"05"025"2"022;"0225
10.00 .30 .03 .01 (Note that there are no zeros
before the '." this time)

The floor symbot I used in a field specification behaves like the decimal point (.) except that it
specifies where the point will print, rather than where it actually ist I$ymbol is used in a

spedfication, the decimal point of the right argument is assumed to be at the right of the field, and the
fractional part of the right argument is never displayed.

VAV VAN)8345678009:¢:
1234.57 (The number is treated as 123456 and the
. inserted before the last 2 digits)

APLX Language Manual 153

Commas and other text characters will print where indicated if significance has started before they are
reached. Text following the last Z or 9 will only printlife value of the field is negative. If the picture
is too small for the formatted value, are used to fill the field.

'277,779.99,779.99 CR,ZZ2Z2,772.27' § 101789.356 22 7777777
101,789.36 22.00 CR****xwxsx

)\, 1;,;,1;;)%82332:38
1/10/86 (A date formatter)

Text may be placed between columns of the specification, and will repeat on every output line. The
text mwst be placed within quotes (') and any number of such fields may be specified.

)VV ;s =)) " " XGTUWU" "))=\V\,;)"8"4"483"4"5"6
1 VERSUS 2
3 VERSUS 4

Negative numbers, floating characters, fill characters

The minus sign is rtalisplayed unless specified in the picture (nor indeed is the plus sign). Aor

- put at the beginning of the picture will cause the specified sign to be displayed where applicable.
Negative numbers can alternatively be displayed in brackets, Kdisaare placed round the picture.
The symbolg], (), Grandk Lare treated as alternative ways of displaying the minus sign.

The+ sign or the various negative signs are shown at the very beginning of the relevant field. If you
want the sign to appear immediately before the first displayed digit, use tve sijns at the

beginning of the picture. This is known as ‘'floating' the character. Any character may be floated by

placing it twice at the beginning of the picture. The second declaration is converted to a Z internally
after the 'float' is noted.

'-779.99' § 17 23

17.00 - 2.30

Y **\V\V0; ; +")"8"39"1405
17.00 (2.30)

) &&\V\ ; 0; ;" =&\\N;0;;")8"57067"55097
$35.45 $ 33.75 (Floating versus fixed character)

If a character is put at the beginning of a pietand followed by the symbol, it will be used as the
fill character instead of the normal blank. Any character except|. amy be used as a filler, and the
declaration does not affect the resultant field length.

), ~&&\\ .\ \;0; ;" QMUBEM3PI7E " 1 3
, &3.396079"Q1F",,,,i525097,,,,,

APLX Language Manual 154

OFormat

One-argument form See also twargument form$ormat by specification, Format by example

O, applied to any argument (character or numeric, simple or nested), converts it to characters
according to the default display rules. (The formatted data may still look numeric since it is composed
of the digits 0 to 9 together with suitable spaces and decimal points but it has the properties of
character data and can be mixed in displays with ai@racters). The result is always a simple
character array.

QTY§" 3982" 4

§ QTY (Asks the size of the data in QTY.
2 Answer is 2 numbers.)
sv[i"g"Oo"sy[""rrrrmrnm v x gt ocvu"fecve"kp" SV[0+
§ QTY (Asks the size of the data in QTY.
6 Answer is now 6 characters.)
y RTKEG" KU"). 044063037""""*Vjg"pwogtke"fcvc"ku"hq
PRICE IS 25.3 character data to form a simple character
vector)
FCVCg*S5+"*4"48S6+")VGZV)"322
DATA
123 12 TEXT100
34
SDATA
4
FCVCgOFcCcvc " "nmnmmmmnmnms gt ocv"rtgugtxgu"vjg"ec
DATA array, but makes it into a simple
123 12 TEXT100 character array)
34
SDATA
224

OFormat by specification

Two-argument form See also onargument fornformat

The right argument must be either a simple array, or have a maximum depth of 2 (no element higher
rank than a vector).

Like the oneargument form, this version afalso converts numeric data to characters. The right
argument is formatted according keetinstructions in the left argument which is a integer scalar or
vector. These instructions specify the width of each field in characters, and the number of decimal
places to be displayed. If necessary, numbers are rounded in order to display thepositithres
available.

APLX Language Manual 155

If the first number in the left argument is O, the system uses the specified number of decimal places,
and as many other characters as are needed. If a single number is used for the left argument, it is
treated as two numbers with tfiest set to O.

Scaled (or scientific) notation can be forced if the second number of a pair of numbers in the left
argument is negative. In this case, the negative number specifies the number of digits before the E
character.

To display each number on thght in a field which is 10 characters wide and has 2 decimal places:

102 O 13.8765390 6 87.213 23.1
13.88 6.00 87.21 23.10

TABLE
2.77 1.731 229
11 0.3301 2.3

To display each column in TABLE as acharacter field with no decimal places:

7" 2" OBLEC
3 2 28
11 0

To force scaled notation:

" 14" 0"903
7.1E000

To specify the number of decimal places while allowing the rest of the number as many character
positions as it needs (including one leading space

2" 4" 0"4403;:9";;;03
22.20999.10

§2"4"0"3309" """ Cymu"vjg"uk|]g"gh"vjg"hg
6 It has been allocated 2 positions after

the p oint, plus the 4 positions needed
for the 2 integers, the point itself
and a leading space)

Note: the above examples show a single pair of numbers in the left argument beirdjiagptie to
each number in the right argument. The left argument can instead contain a separate pair of numbers
(ie separate instructions) for each term on the right.

10283 O 279.5547 10.1234
279.55 10.123

Using T H ®vith format by specification

Certain elements in the system variable E" Hgt o c v " Eanpnfluenee the display generated by
Owhen acting as ‘format by specification'. In index origin 1:

T HE] spedfies the character used for the decimal point. (. by default).

APLX Language Manual 156

T H E] specifies the overflow character used for numbers too wide for the column width specified. (0
by default, causing BOMAIN ERRORON overflow).

T H E] specifies the negative number inalior.(— by default).

TFC
WO_ (Default settings)

7" 503222 " x EQOCKP" GTTQT" hgt "gxgth
DOMAIN ERROR

7" 503222

AN

THE] 6_9) ,)
7" 503222" v "*Cnvgtpcvkxg"qxgthnqy"e
*kkkk
THE] 3_¢g) .)
32"5034037
12,150
THE] 8_@)1)"" oo "*Ej Cpi g"pgi CVng"pWOdgt”
32"50134037
/1 2,150

OFormat by example

Two-argument form See also onargument fornFormat
The right argument must be a simple numeric array.

Like the oneargument form, this version dfalso converts numeric data to characters. The right
argument is formatted aording to the instructions in the left argument which is a simple character
vector. The left argument is used as a pictorial model of the format which should be applied to the left
argument.

The left argument can either be one field, in which case #idti§ used to format each element or
column of the right argument, or a series of fields to be applied, one to each column of the right
argument. Numbers will be rounded to fit into their formatted layout.

A field is made up of characters drawn from tharacters '0123456789' and . (full stgpjcomma)

and a special 'prirasblank’ character, usuallyand set by HE] 7Fiedds are separated by either one

or more spaces or by a character identified as a field separator by a special indicator lch theyfie

ot her characters used in the | eft argument ar e
adjacent to the characters defining a field or within a field.

In common with other formatters, format by example permits decorator characters to

- Appear always

APLX Language Manual 157

- Appear if the number being formatted is negative
- Appear if the number being formatted is positive

- Float against the number being formatted, that is appear immediately next to the front or back of the
number when it is formatted

Thestandard character used for format by example fields is 5, which is used to indicate simple
formatting with removal of leading zeroes and suppression of trailing blanks. Zero values print as
blanks.

'55.55' (22.234 1.398 11.00

22.231.411 (Trailing blanks in 11 suppressed)
y77077"70777"77077"77)0440456"305; :"2022"3302
22.231.398 11 (O prints as blank)
y777.777.777077) 034567890 ;
1,234,567.89 (The , only appears between digits, leading

blanks are suppressed)

The control character 5 does not print positive or negative indicators-(-aiod indeed will not
accept negative numise

'55.55' O "10
DOMAIN ERROR o

Yy 77077) 0l 32

N

Decorator characters which appear at the beginning or end of a field specification without special
control characters will print where they appear in the left argument, they will not float.

)y " UCNCT["KU" <" &777.777.777022)"0"34567890; 7
SALARY IS :$ 1,234,567.95 ($ decorator does not float)

Negative numbers and floating decorators

The field control characters 1 and 2 should be used if negative numbers are likelpuadefthe

right argument 0b oThey will control any decorators which appear at the beginning or end of a field
specification. These control characters will print their associated decorators if the number being
formatted is negative (the character 1positive (the character 2). In addition the decorator will float
against the number being formatted.

y1377077)"03203"1340568"3307

10.1 "12.35 11.5 (Negative numbers with high - minus)
)y *377077+)"03203"5340568" 33
10.1 (12.35) 11.5 (Negative numbers in brackets)
§) *377077+)03203"1340567"3307
24 (Overall field size is the same, floated
characters which do not ap pear are replaced
by spaces)

)y -477.777.777077)0"1323056"3222456" 3503
101.34 +1,000,234 +13.1

APLX Language Manual 158

The control character 3 will purely float a decorator against a number being ffraatt! will not
accept negative numbers.

) VIG" DCNCPEG"KU" <" &777.777077)"0"32249056
THE BALANCE IS : $ 10,027.34

) VIJG" DCNCPEG" KU" <" &777.777075)"0"32249056
THE BALANCE IS : $10,027.34

In the example above the curogrsign is floated against the amount. Note that the overall field length
is the same and that decorators which are not next to the field specification do not float .

If the control characters 1, 2 or 3 appear in a field specification on their own thepply to the
decorators on both sides of the field. If two of these characters appear in a field specification, then
each will apply to the decorators on its side of the number. In the example below, 1 acts with the
minus sign on the left, 2 acts witheticsharacters CR on the right.

'-377.777074ET) 0" 323056"1322204;"3758905638
101.34CR -1,000.29 15,367.35CR

Finally, the control character 4 can be used to switch off the effect of the control characters 1, 2 or 3.
In the exampldelow, the 4 switches off the effect of the 1 such that, on the right of the numbers, the
characters DEG always appear.

'-37607FGI"")"0O;70:"5407"14904
95.8DEG 32.5DEG - 27.2DEG

Contrast the effect when the character 4 is omitted

'-37707FGI"")0; 70:"5407"14904
95.8 32.5 - 27.2DEG

In this example, the characters DEG print when the number is negative, under the control of the
character 1.

Leading and trailing zeroes

The printing of leading and trailirgeroes can be forced by the control characters 0 and 9. One of
these control characters placed in a field will indicate that Os should be used up to that position. The
effect of the 0 and 9 only differs in their treatment of the number 0. Control chadagiéprint the
appropriate number of Os, control character 9 will use blanks.

'55.55 O21.1 27.25 33

21.1 27.25 33 (Trailing zeroes suppressed)
) 77072"")04303"49047"55
21.10 27.25 33.00 (Always print to two decimal places)

y7707277"")04303"49034567"55
21.10 27.123 5 33.00 (0 only forces printing of zero up to its
position in the field)
y77022"")04303"2"55
21.10 .00 33.00 (Control character 0 prints value 0)
y7707;"")04303"2"5
21.10 33.00 (Control character 9 does not)

APLX Language Manual 159

)y277.777072)"0"322203
001,000.10 (Leading zeroes forced)

Cheque protection

Control character 8 fills empty portions of a field with the contehtsH E] éy default the
character).

) VQVCN" COQWPV" &5: 7. 777.777022) 03222
TOTAL AMOUNT $******1 000.00

Alternative end of field delimiter and blanks within numbers

It is sometimes useful to format numbers with no spaces betweenTheaimay be achieved by use
of control character 6 which can be used to mark the end of a field.

)7778128127")05ATVU" """ "*Vjtgg"hkgnfu"kp"nghv"c
1991/06/14

Contrast the example above with the next example which insdetsagator within a number being
formatted.

y2777177177")03; ;32836""*Qpn{"qgpg"hkgnf"kp"nghy
1991/06/14

The 'printasblank’ character T H E Jand_ by default) can be used to insert blanks between the
digits of a numbewithout ending the field.

y70777a777a777a777a777"") 0" (3
3.141 592 653 589 790

Using T H &vith format by example

Certain elements in the system variapleE" Hqt o c v " Eanpinfluenae the display generated by
Owhen acting as ‘formdéty example'. In index origin 1:

T HE] specifies the character used for the decimal point. (. by default).
T HE] 8pecifies the character used for the thousands indicator. (, by default).

T HE] specifies the fill character for empty portions of a fieldew!8 is used in the field
specification(* by default).

T H E] specifies the overflow character used for numbers too wide for the column width specified. (0
by default, causing a DOMAIN ERROR on overflow).

T HE] 3pecifies the character to be used infikle specification to indicate that a blank should be
inserted between the digits of a number. (The default is

APLX Language Manual 160

THE" """ nnr e Eghecwnv"ugvvkpi "hgt " THI
S0
y77077)" 03222k EQOCHAIOWETTQT" gp" hkgnf "
DOMAIN ERROR
Yy 77077) 03222
N
THE] 6 _¢g),)" """ "*Qxgthngy"ejctcevgt"ugyv-
) 77077)" 03222
THE] 3" 4 _¢g) . 0) " trmmmmmmrmrTgxgtugtejctcevgtu” wug
Y777 .777077"")03392067"""vjgwucpfu"kpfkecvqgt +
1.170,45
THE] 5_¢)~) """ mnmnmnmmm*Hknn"gorv{"rqukvkgpu"yl
) &: 77777"") 03224
$||1002
N Execute

Execute, followed by an APL text expression, causestpeession to be evaluated as if it had been
entered at the keyboard in calculator mode. This has numerous applications, some of which are briefly
summarized below.

It can be used to turn character data, which contains numeric characters only, into dataeric

LIST ") 567" 789)

§ LIST
7 (LIST contains 7 characters.)

§ n NKUy®" " nmmmmmmmmmmmmmw s NKUV" ku"gzgewvgf."cpf"§™
2 result - 2 numbers)

3" - "ST (This demonstrates that the
346 568 executed form of LIST can be

used in arithmetic)

It can be used as an alternative to branching in adefered function:

[4] n*NQQR?32+1)FCVCgFCVC632)

If LOOP does not equal 10 when line 4 is executed thygerator will give an empty vector to. and
nothing will happen. If LOOP does equal 10, theperator will pass the character data tand the
value of DATA will be mutiplied by 10 after execution.

In APLX, system commands can be executed using gremitive:

h NKD
3_"6"Ujgy"eqgpvgpvu"gh"nkdtct {"2
4 "n) +NKD)

5 "nh

—_——

The output from executed system commands can be captured in a variable:

APLX Language Manual 161

Zgn) +U[ODQNU)
X
IS 1026, USED 21

n can be used to execute single line function definition statements. The implicit result of the operation
is an empty vector, as is the result of executing any statement which does notdsue a r

With an existing function called FUNCTION:

N hHWPEVKQP] 5 _Cg4h)
nN hHWPEVKQP] 4_Dg3)""""""*Pgvg"n"uwrrnkgu"vjg"enct

With an existing function called FN:

hHP] T_h" omomomomomm o "*HWperqp"kaj "pq"tguwn
"Cg3"4" 5
h
SFN
VALUE ERROR
SFN
N

S IFN' (Execution gives an empty vector result)

13

L Stop

One-argument form See also twargument formLeft

The moradic primitive function_ (stop) takes a right argument of any type, rank and shape. It discards
the argument, and always returns a result which is agnating) empty matrix. It can therefore be
used to discard an unwanted result from another function:

L Tount'c: \temp'

L Left

Two-argument form See also onargument fornStop

The functionL (left) takes left and right arguments of any type, rank and shape. It discards the right
argument, and passes the left argument through unchanged.

It canbe used as a statement separator, where (unlike jJugiiaghond) the actual expressions are
evaluated in normal APL rigkb-left order:

APLX Language Manual 162

zg3"4"5"L"{g6"7"8"L"]g9"
X

123

y
456

V4
789
K Pass

One-argument form See alsovwo-argument fornRight

The monadic functior (pass) simply passes its argument through unchanged. The argument can be of
any type, rank and shape; the result is identical.

Although at first sight this does not appear very useful, it can be used toHerdsplay of a result
which otherwise would be ngprinting:

KcgS32
12345678910

K Right

Two-argument form See also orargument fornPass

The functionk (right) takes left and right arguments of any type, rank and shape. It disvald# t
argument, and passes the right argument through unchanged.

It can be used to embed psetmonments in an expression:

-1)Ucorngu"rgt"vguv)k455"56: "4;9
878

APLX Language Manual 163

T Evaluated input

If Tappears to the right of tiiesymbol or is referenced in @ other way, it causes numeric input to
be accepted from the keyboard and to be put into the variable named in the assignment. Valid APL
expressions can also be entered whilgtimput mode, and their results will be returnedrySystem
commands canlso be entered whilst iminput mode, and their results will be printed andthe

prompt redisplayed. An empty input in responsg itgput is not accepted, and the prompt is
redisplayed.

RTKEG" g" 34072

svp"gT7"""rrrr T e'WU'gUTm'T<"vg"dg"fkurnc{gf"cu"c
T: prompt to the user to type a number.

50 Here the user types 50. This is put in

'VALUE IS ' (PRICExQTY) QTY and the expression is evaluate d)
VALUE IS 625

svigT""*"rrrrrrnmmmmmnmn ke Kh"yvjg"wugt"v{rgu"cp{"
T: yielding a numeric result, this is

50+50 accepted.)

QTY
100

svigT"" " rrrrrrnmmmmmnmnmn ik yigtwugt"v{rgu"kp"c"xg
T:

12345

QTY
12345

3"4"5- ek Kprwv"ku"tgswguvgf"cpf
T: the expres sion)

4
567

T Output with newline

If Tappears to the left of thesymbol, it causes the result so far to be displayed. This may not be the
result of evaluating the complete lineTasan occur anywhere on the line. The datauipot together

with a newline (carriage return) character, and is displayed subject to the values of printing precision
* T R RaAd printing width* TRY + 0

5-Té7
2 (The intermediate result of 9 -7)
5 (The final result of 3+9 -7)
TgEQUVg" 4: 67" """ mnmmxVig"tguwnv"ku"rwv"kp"EQ
140 displayed)
EQFGYgTYgN) FGCVITQY
WORHTAED (Reversed 'DEATHROW' put in CODE and

displayed. Note characters are accepted)

APLX Language Manual 164

ECharacter input

The &symbol causes the computer to accept data typed on the keyboard. Whatever is typed is treated
as characters, even if & made up of the digits 0 to 9. (Se# you require numeric input, or
alternatively use . (execute) to convert text data to numeric data.)

@&does not cause a carriage return when used for output.

CgE'"" "t edat'the wagioning df k u " r nc e
HELLO the next line and whatever is typed is
accepted. Note there is no prompt. The
characters HELLO are put in A.

A the contents of A are displayed)
HELLO
zZg &
12 (12 isputin Xasa?2 - character data item)
X+5
DOMAIN ERROR (The 12 in X is two characte rs . Characters
AR "ecp)v"dg"wugf"kp"ctkv]
A you want to convert characters to numbers.)

An extract from a usedefined function:

[3] 'PLEASE TYPE YOUR NAME.'
]6_""PCOGQCE"""""""""""""""""""*Vjg"tgurqpug"kU"I‘WV"
[5] 'THANK YOU ',NAME (The contents of NAME are

displayed after THANK YOU ")

The dialogue will look like this:

PLEASE TYPE YOUR NANME.
REGINALD
THANK YOU REGINALD

EBare output

In addition to its use for inviting and displaying keyboard ingEdan be used to display values
generated internally by APL statements, that's to say, a value or result can be assipiatdo

output does not include a terminating newline (Carriage Return) character if it is followed by another
bare output or character input. In addition, bare output does not include newlines if lines exceed
printing width. Numeric values placed d@n thisway (rather than from the keyboard) are treated as
numeric.

CgE§3222
1000 (Note that the value is displayed
Ax3 as well as being assigned to A)

APLX Language Manual 165

3000

An extract from a serdefined function

]3_""""" @ §")RNGCUG" V[RG" [QWT" PCOGO0")
] 4_|| nonon "PCOGQCE
[3] ~THANK YOU ',NAME

The dialogue will look like this (the user types the name REGINALD)

PLEASE TYPE YOUR NAME. REGINALD
THANK YOU REGINALD.

Note that there's no carriage return aftercdom line 1- the name is typed in on the same line as the
text.

Note too the spaces when the name is output. The exact form of the res{iecs the variable

NAME) will vary from implementation to implementation. In general, in a situation such as the one
shown, APL notes the character position at which the respoissdds (REGINALD starts at

position 24) and stores the response preceded by a corresponding number of bldriksh&atters
REGINALD preceded by 23 blanks are put in NAME and are subsequently displayed. (The system
functionT F Dgets rid of blanks for you if you don't want them.) Check with your implementation
notes issued in case the rules are different for ggstem.

The system variablg R twhich is set to be a blank character by default) controls the characters used
to replace the prompt. In the example abovg,Rfwas set to some other character, then that character
would be used in place of the 23 blanks} R Was set to be an empty vector, then the actual prompt
is returned. For more details see the entryrfart o

/ Reduction

When used with a function operand theperator is known as Reduction (see the entry for
Compression for the other functioderived fromv). The context in which the is used should make
clear the operation being carried outan be applied to any dyadic functiomcluding user defined
functions. When used with a scalar or @glement vector integer left argument, theperator is used
to perform 'Nwise reduction'.

The left operand of is inserted between all elements of the array right argument. In the absence of an
axis specification, the operand is inserted between items along the last axis (see also thejentry for
the Axis operator).

+/246 (This is the same as 2+4+6)
12

UCNGUg47" 709" :"72"323"96" 3;

+/SALES
282.7 (The sum of the numbers in SALES)

L/8266931 5H"* "t r A yjgtucog"cu":4"pL"88" LT, 5"L"
;S ey pg"tguwnv ' ght"; 535"

APLX Language Manual 166

with 66; the result of this comparison

is compared with 82; the re sult of the
last comparison is the largest)
f12"3"3"2"2""m v xyigtycog"cu"2"T"3"T"3"
1 (Used to test if there are any 1s)
AN01100 (Are there any 1's?)
J/'ABC' 'DEF' 'HIJ'
ABCDEFHIJ
§,/ABC''DEF 'HIJ" (Resultis a scalar)
EMPTY
TABLE
123
456
x/TABLE (Multiply is applied to t he elements
6120 of a matrix. Since no dimension is

specified, it works on the last
dimension, the columns. 6 is the
result of multiplying the columns in
row 1. 120 is the product of those
in row 2)

/| applies by default to the last dimension, whilst the similar opernat@pplies by default to the first
dimension.

x/[1]TABLE (The [1] specifies that the operation
41018 is to apply across the 1st dimension,
6nvCcbhDNGg" " "
41018 multiplied by the corresponding
element in row 2.)

"vj gtintrogylis0" Gcej "gngog

N-Wise Reduction

The definition of Nwise Reduction is very similar to the definition of Reduction. The leftrasm,

an integer scalar or length one vector, is used to specify the length of successive subsets of the right
argument on which the Reduction operation is performed. If the left argument is negative, each subset
is reversed before the reduction operat®oarried out.

For a left argument of absolute value n and the selected axis of the right argument of length m, the
number of subsets to which the reduction can be applied are:

1+m - n

and thus the limiting case is where the sample sizegreater than the length of the selected axis,
giving a empty result.

2+/ 810 (Add up the numbers 2 at a time, starting
357911131517 19 at the beginning of the vector)
7-1832 nnmr o nm k7 oyt c"yvkog+
152025303540
32-1832 o gt 08 Sathecas Ordinary
55 Reduction)
33-1832" " x Joorng"uk| g"3"itgecvgt "

. empty result)
FCVCg5" 658534

APLX Language Manual 167

DATA
1234
5678
9101112
2+/[2]DATA (Add up 2 at a time across the columns
357 the second dimension)
111315
192123
2+/[1]DATA (Add up 2 at a time across the rows, the
6 81012 the fist dimension)
14161820
NUM§ 32 A3 2
NUMS
28563171049
2- INUMS (Subtract sucessive pairs of elements)
63 132 6 365 (Reverse the elements before subtracting)
“2-/NUMS

6 313 263 65

2,'AB''CD' 'EF' 'HI' (Join elements, 2 at a time)
ABCD CDEF EFHI

3,/'/AB''CD" 'EF' 'HI
ABCDEF CDEFHI

N-wise reduction is commonly used for moving averages. For example, if SALES is a vector of
monthly sales figurg then

(12+/SALES)=12

gives the annualised moving average sales figures by month.

n 1st axis reduction

/| applies by default to the last dimension, whilst the similar openat@pplies by default to the first
dimension.

x/[1]TABLE (The [1] specifies that the operation
41018 is to apply across the 1st dimension,

6 r'] V C D N Gll n n n n n n " n n n n n n n n n n V j g n t q y u O n GC e j n g n g 0 g p V
41018 multiplied by the corresponding

element in row 2.)

APLX Language Manual 168

\ Scan

Whenused with a function operand, th@perator is known as 'scan’. The type of operation being
carried out will be apparent from the context in which the symbol is used(Scaan be applied to
any dyadic function, including usettefined functions.

The kft operand of is any dyadic function. The effect is as if the function had been entered between
all the elements of the data. In the absence of an axis specification, the function is applied to the last
dimension. (This is similar t9. A given elemenbf the result consists of the result of applying the
function repeatedly over all the positions up to it. In each case the general rule for the order of
execution is obeyed.

+2010°57 (Compare with 20+10+ 5+7. The result shows
20 30 25 32 the running totals and the final sum)

, \'AB''CD' 'EF' (Repeated applications of ,)
AB ABCD ABCDEF

TABLE
523
476
x\ TABLE (Puts x be tween all elements of TABLE
510 30 and shows the result of each
428 168 multiplication in row 1 and in row 2.
Note that since no dimension was
specified, the operation takes place
on the last dimension, the columns.
See[] - the axis operator)
xNTABLE (First axis scan. Applies across each
523 row, i.e. Down the columns. Same as
20 14 18 X \ [1]TABLE)
AN 111011 (Applies logical 'and' over all
111000 elements. A series of 1's is produced
up to the first 0. Shows where a test
first failed)
-\1234 (The intermedia te results are
171272 1
1-2
1-2-3
1-2-3-4
Useful examples of Scan include:
A All O after the first 0
T\ All 1 after the first 1
<\ 1 at the first 1
ij\ 0 at the first O

i\ Oor1, reversing at each 1

APLX Language Manual 169

N 1st axis scan

\ applies by default to the last dimension, whilst the similar openmat@pplies by default to the first
dimension.

TABLE
523
476
x\ TABLE (Puts x betw een all elements of TABLE
510 30 and shows the result of each
428 168 multiplication in row 1 and in row 2.
Note that since no dimension was
specified, the operation takes place
on the last dimension, the columns.
xNTABLE (First axis scan. Applies across each
523 row, i.e. Down the columns. Same as
20 14 18 X \ [1]TABLE)

/ Compression, Replication

When used with a simple numeric scalawector operand the operator is used to perform the
compression or replication functions. The context in whichused will make the type of operation
apparent.

Compression

The left argument is a vector of 1's and 0's. The right argument must canfermgth but can be

numbers or characters. With a matrix right argument the dimension on which the operator works must

be of the same length as the left argument. For each 1 in the left argument, the corresponding element
in the right argument is seledteFor each 0, the corresponding element in the right argument is

ignored. If a single 1 or O is used as the left argument, scalar extension ensures that none (0) or all (1)

of the right argument is selected.

0101/'ABCD' (The lett ers in the same positions as
BD the 1's are selected)
11110/1214161820
121416 18 (20 corresponds with the only 0 and
is ignored)
OCTMUg67"82"55"72"88" 3;
RCUUgOCTMUJ72" """ """""""% Gcej"octm"itgcvgt"vjcp
PASS/MARKS 50 puts a 1 in PASS. Those less
60 50 66 than 50 produce 0's. The humbers
corresponding to 1's are selected)
*OCTMU?72+1S8§0OCTMU""""""*Yjkej "ogodgtu"qgh" OCTM"
4 The fourth)
1/'FREDERIC (The 1 or O left argument to /
FREDERIC can be used to select whether the

APLX Language Manual 170

0/'FREDERIC' text is selected or not.)
(empty) .
VCDNGg4"5" 8§58
0 1 O/TABLE (Select on the last dimension - columns)
2
5
1 O/[1]TABLE (Select on the first dimension - rows
3r4nr et ycog"qrgtecvkgp"cu" 3"

The form of/ shown with the text string FREDERIC is often used to control branching within
functions. Se¢he Reference section which covers Functions. The compression operaaqpplies
by default to the last dimension, although it may be used in conjunction with the axis opjerator,
First axis compression, . applies by default to the first dimensiontlagain may be used together
with the axis operator. Remember that the axis operator is affected ko

Replicate

This is used to generate multiple copies of elements of the right argument. In addition Replicate can be
used either to replace a specifEdment with one or more instances of that element's prototype or to
insert one or more instances of that dimension's prototype. Positive integers in the left argument
specify how many copies of each corresponding element in the right argument are wanted.

Negative integers in the left argument are used to insert or substitute prototypes. The two alternative
mechanisms for this case are:

(a) Length of left argument the same as the length of the selected dimension of the right argument. In
this case, negativelements in the left argument specify that the corresponding element in the right
argument should be replaced by the appropriate quantity of its prototype.

(b) If the number of nomegative elements in the left argument is the same as the length of the
selected dimension of the right argument, then negative elements in the left argument indicate the
position and quantity of prototype elements to insdhte prototype being used being that of the first
element of the axis.

As usual, a scalar left argumestextended to match the selected axis. If a replication is carried out
along an axis of length 1, that axis will be extended.

2 2 2/TABLE (Replace second column of TABLE by
110033 2 columns of Os - the prototype)
440066

2 22 22/TABLE (Insert two sets of two columns of 0s)
1100220033
4400550066
VEQ)3" 4" *4"48S6+"5"6
VEC
12 12 34
34
11"211/VEC (Insert two copies of the prototype of the
12 00 00 34 third element of VEC)
00 00
11 2111UVEC (Insert two copies of the prototype of VEC)
1200 12 34
34

APLX Language Manual 171

232/'ABC'
AABBBCC
2 /'DEF (With a scalar left argument, the 2 is
DDEEFF is extended to each element on the right)
505/123
1111133333
2/TABLE (TABLE as above. Replicate on last
112233 dimension)
445566
4nAnvCDNG" " ®m " nmrmmnmmmmnn oy Tgrnkecvg"qp" hktuv"fko
123 2/[1]TABLE)
123
456
456
4"515"38§)CDbE) """ vt nrmm"*x Ncuv"czku. "vjg"egnwopu
AAAAA length 5 to satisfy left argument)
BBBBB
Ccccc
4"13"41]14_5"38)CDE)"""""*Ncuv"czku"gzvgpfgf"cpf
AA AA inserted)
BB BB
CcccC

N 1st axis Compress, Rdjrate

/| applies by default to the last dimension, whilst the similar opernat@pplies by default to the first
dimension.

VCDNGg4"5"8§S8

2/TABLE (Replicate on last dimension)
112233
4455 66
4nvcDNG " nrrnnmmmmmmmmm oy Tgrnkecvg"gp"hktuv"fko
123 2/[1]TABLE)
123
456

456

APLX Language Manual 172

\ Expand

When used with a simple numeric scalar or vector operand,dperatomperforms the function
known as Expansion. The context in which the symbol is found should make it apparent which
operation is being performed.

Two-argument form only

Inserts the array prototype. If the left argument consists of 1's and 0's, each Gacspesssor O to be
put in the corresponding position in the right argument.

There must be as many 1's in the left argument as there are elements in the right argument.

1110111 \'PIGDOG" (The 1's represent the existing
PIG DOG characters in the right argument.
The 0 shows where a space is to go)

TABLE
12345
678910

011111 \ TABLE (Eachrow is to have a O inserted
012345 before the existing numbers. Note
0678910 that the last axis is assumed)

The expansion function applies by default to the last axis, unless used in conjunction with the axis
operator]] (remember this is affected fyk Q +The first axis expansion function,. applies by
default to the first axis, but otherwise behaves in the same way as the expansion function.

101 \[1] TABLE (Using the other axis, the

123 6 7 " """ucog"cu"3"2"3NVCDNGH+
000O0O
6 78910

If the left argument includes numbers other than 1 or 0, a positive number specifies how many of the
corresponding element to insert, and a negative number specifiasnifsemnof prototype elements to
insert. There must be as many positive numbers in the left argument as there are numbers in the right
argument. (See replicate under

10325 \ 382 (1 copy of first element, then 1 prototype,
308880022222 3 copies of second element, 2 prototypes
5 copies of third element.
VE@Q)* 4" 48S6+"5"6"7"8""""*Rtqvgqv{rg"ku"c"ukorng"p
110111 \ VEC shape 2 2 and is used by expand)
12 3 00 456
34 00

APLX Language Manual 173

N 1st axis expand

The expansion function applies by default to the #&is, unless used in conjunction with the axis
operator]] (remember this is affected hyk Q +The first axis expansion function,. applies by
default to the first axis, but otherwise behaves in the same way as the expansion function.

TADNG" g" 4" 758532

3"2"3"N"VCDNG" """t Wyukpi "vjg"gvjgt®"czku. "
12345 sameas101 \ [1]TABLE)
000O0O
6 78910

. Inner product

Inner product takes the form:

DATAL1 FN1. FN2 DATA2

Where the operands, FN1 and FN2, are both dyadic functions, includingleBeed functions. Inner
product first combines the data along the last axis of the left argument with the data along the first axis
of the right argument in an 'Outerdéuct’ operation with the right operand. Finally a ‘reduction’

operation is applied to each element of the result.

If the two arguments are vectors of the same size, then the inner product gives the same result as FN2
being applied to the data and thenlHbeing applied to the result in a reduction operation. (See
reduction.)

Z"g"3"5"7"9

["g"4"5"8"9

X+=Y (This finds and totals the agreements
2 between X and Y)

The above statement is equivalentto=y and involves the following steps:

X=Y (Compares X and Y)
0101 (1 means agreement between elements)
+0101 (Sums't he agreements)

2

Using the same values of X and Y as above:

Xr=Y (Returns a 1 if all elements in
0 X equal all elements in Y)
Xr=1357

APLX Language Manual 174

When applied to dataf more than one dimension, such as matrices, the operation is more complex.
For matrix arguments the shape of the result of the operation is given by deleting the two inner axes
and joining the others in order. For example if we have:

TABA of 4 rows and columns
and TABB of 5 rows and 6 columns

The inner dimensions are used by the inner product operation, and the result witde &&olumn
matrix.

The operations take place between the rows and columns of the two matrices thededore the
same as inner product operations between vectors as described above.

TABLE1 T
1 2 6
5 4 7
3 0

ABLE2
234
018

RESULH VCDNG3" - 00" VCDNG4
RESULT

20 2 5 20

58 10 19 52

18 6 9 12

The first number in RESULT is produced from row 1 of TABLE1 and column 1 of TABLEZ.

12+x67 (Equivalentto +/12x6 7)
20

Row 1 of TABLEL1 is then used with each remaining column in TABLEZ2 to produce the first row of
RESULT. Then row 2 of TABLEL1 is used with each column of TABLE2 to produce the second row
of RESULT and so on. So the 10 highlighted in row 2 of REEULderived from row 2 of TABLE1
and column 2 of TABLE2:

54+x20 (Equivalent to +/ 5 4 x 2 0)
10

The operation shown above is the Matrix Multiplication operation. The operation can haseatsan
operands:

X
123
456
Y
123
456
789
X+.,Y (Columns of Y catenated to rows of X
1821 24 and the results added up)
27 30 33
§X+.,Y
23

Other useful combinations are:

APLX Language Manual

A”.=B Instances of vector B in matrix A

175

C0iD"""Hkpfu"yjgtg"vjgtg"ku"pg"ukping"ocvej"qgh
in matrix A

A+.=B Gives a count of agreements between A and B

C-0TD"""lkxg"c"eqwpv"gh"ogodgtuj kru"gh"D"kp"C

These may, of course be extended to higher dimensional arguments. The general definition of inner

product is given below. For the inner product operation

DATAL1 FN1.FN2 DATA2

the result is defined as

HP31A"*]]88FCVC3_FCVC3+T0HP4"]]3_FCVC4

T OOuter product

This involves two data items and a function. The function can be any dyadic function, including user
defined functions. The function operates on pairs of elementstaken from the left argument and
one from the right, till every possible combination of two elements has been used.

Z"g"4"5"6
["g"3"4"5" 6
z"ioo"[e ownvkrnkgu®
2 468 number in Y generating a multiplication
36912 table:
4 81216 Y
|1 2 3 4
X 22 4 6 8
313 6 9 12
4 4 8 12 16
01234 7101234
11111
01234 (Gives all possible combinations. See !)
00136
00014
00001

gxgt{"pwodg

Note that this function always generates a result of one more dimension than the originahtegume

Two vectors, for example, generate a matrix.

3"470. S5 v x Egogdkpgu”
111213 with successive elements of the right
212223 argument u sing the , function)
§3"470. S5
23 (Shape of result 2 3)
4" 57T 0H3" 4"
10 20 successive elements of the left argu
100200 and right argument)

84" 57T 0H3" 4
22 (Shape of result 2 2)

gcej"gngogpv”

"*Vjg"H.")vcmg) . "

ment

hwpevkaq

APLX Language Manual 176

The Outer Product will accept arguments of any shape and number of dimensions. The result will be
an array whee shape is the shape of the left argument followed by the shape of the right argument.
For example:

where A is a matrix of 4 rows and 3 columns, and B is a matrix of 5 rows and 2 columns, will produce
a result of shape 4 3 5-2a four dimensional array.

The result is as defined above, namely all possible combinations of the left and right arguments. The
rule that shows the layout of the result is that, for

TgC"T 0>HWPEVKQP@" D" """""*yjgtg"C"cpf"D"ctg"ujcr

Theresult, R, has a shape 4 35 2 and

R[C;D;E;F] is given by A[C;D] <FUNCTION> B[E;F]

" Each

One-argument form

The" (‘each’) operator applies its operand to each element of its argument. In the case of a scalar
operand, or a scalar fation, each has no effect.

DAYS)) OQPFC[) ") VWGUFCJ)

§"'DAYS
67 . A
FCVCg*4"458S6+"*S32+";905"*5"68) M) +
SDATA (Length 4 nested vector)
4
§'DATA (Shape of each element, note empty vector
22 10 34 shape for element 3, the scalar)
§ SDATA (4 shapes returned)
4
SAsAFcCcvc nrnmrmrnmn o x yyigtyjecrg"qthd gcej "gh"vj
2102 ranks - of e ach element)

Two-argument form

The tweargument form of each applies is left argument and its operand to each element of its right
argument. Again, for empty left or right arguments, a fill function is applied.

(123),456 (Joini ng successive pairs of elements in
1425 36 the left and right arguments)
23HA) OQPFC[)") VWGUFC[)" *4H"gqh"hktuv"gngogpvVv"qgh
OQ" VWG" " "™ gt gh"yjgtugeqpf +
4HA) OQPFC[)") VWGUFC[)"""*Uecnct"gzvgpukgp"tguwn

MO TU element of the right argu ment)

APLX Language Manual 177

4"5§A3"4" oo "*4§"qh"hktuv"gngogpv. "5
11222
6" 78A)VIG) ") ECV)
THET CATCA

[] Axis

The highest dimension of a data item is considered to be the first dimension and the lowesiat
the last . Thus the first dimension of a matrix is the rows and the last dimension is the columns. In the
case of a thredimensional object, the first dimension is the planes followed by the rows and columns.

Axis numbers are governed by the Ind@sigin, T K Qand in Index Origin 1, (the default), the first
dimension is represented [1y, the second bf] and so on. In Index Origin 0 the first dimension
would be[0], the secondl] and so on. The number used to represent the axis is always a whole
number.except for the ravel and laminate functions.

The primitive functions and operators which will accept an axis specification include the dyadic forms
of the primitive scalar functions :

+-0"E"~"L"T ", e """ TS S > g2 @ i

and some primitive mixafunctions :

trtrrrt""TexgnlEcvgpcecvglNcokpcecvg" "ttt ""*pqvg"hktuv"
k Reverse/Rotate (note first axis variant)

"GpenquglRctvkvkagp

"Fkuenqug

H® "t Vemg

L A S o I

I Index

Rz

as well as the operators :

i*p"""""""EqortguulTgrnkecvg""""""""""""*pnpqvg"hktuv"
i1ttt Tgf weg* no *pgvg"hktuv®
\' N Scan (note first axis varia nt)

\' N Expand (note first axis variant)

AXxis with scalar functions

When used with dyadic scalar functions (see above) the axis operator is placed after the function. The
axis specified is a scalar or vector of axis nuratseich that the number of axes specified is the same

as the rank of the argument with the lower rank and all the axes specified must be found in the
argument with the higher rank. Thus, for example, if the following expression is typed

vect or +[AXES] MATRIX

APLX Language Manual 178

the left argument (vector) is rank 1 and the right argument (matrix) is of rank 2. The axes specified (
axes) can only be a scalar or vector of length 1 and (in index origin 1) that axis can only be 1 or 2 (one
of the two dimensionef matrix).

cgSs " rnmm kY geyqt " CH
Dg5" 688534 "y oyt kz" D+
A+[1 2]B (Cannot have two axes specified with a
AXIS ERROR vector argument - the left argum ent)
A+[12]B
N
A+[3]B (3 is higher than the highest dimension
AXIS ERROR of B - the higher rank argument)
A+[3]B
N
A+[2]B (Axis specification is valid for length
LENGTH ERROR and value, but the length of A
A+[2]B lower rank argument - does not match the
A size of the second dimension of B
A+[1]B columns)
2345
7 8 910 (A valid example)
12131415
B+[1]A (The left or right argument may be of
2345 higher rank)
7 8910
121314 15
MAG4" 5" 68S46
MAT
1234
5678
9101112
13141516
171819 20
21222324
1 10x[1]MAT (Vector multiplied across the first
12 34 mension of MAT. Result has the same
56 7 8 shape as MAT)
9 10 11 12

130 140 150 160
170 180 190 200
210 220 230 240

vCcCbg4"583"7"32"32"72"322

TABX[1 2]MAT
1 2 3 4
25 30 35 40
90 100 110 120

130 140 150 160
850 900 950 1000
2100 2200 2300 2400

TABX[2 1]MAT
1 2 3 4
25 30 35 40
90 100 110 120

130 140 150 160
850 900 950 1000
2100 2200 2300 2400

(Higher dimension example)

(Order of axes is immaterial)

APLX Language Manual 179

Multiple axis specifications cannot contain repetitions.

The next condition for axis with gcalar function is that the dimensions of the lower rank argument
must be the same as the selected dimensions of the higher rank argument. When multiple axes are
specified, they are used in ascending order, irrespective of the order in which they @k enter

Thus, for the example above, if vector is of length 5 and the axis specified is 1 (rows), then matrix
must have 5 rows. If the axis specified is 2, matrix must have 5 columns.

Given correctly shaped arguments and valid axis specifications, the lowesingument is applied
across the dimensions of the higher rank argument specified by the axis operator. The result will have
the shape of the higher rank argument.

Axis with mixed functions and operators

When an operator or mixed function which accelpésaxis operator is applied to data, it works on the

last dimension, unless another dimension is specified. Alternatively, you can use th&ilrst

functions and operators (see Ravel, Catenate, Rotate, Compress, Expand, Scan and Reduce) which ar
specally defined to apply by default to the first dimension. To specify a different dimension, enclose

the number representing the dimension in square brackets, and put it after the operator or function.

TABLE
1234 (TABLE has 2 rows and 4 columns)
50 60 70 80
+/ TABLE (No dimension is specified, so the
10 260 add takes place on the last
dimension, ie across the co lumns
giving the sums of the rows)
+/[1] TABLE (The first dimension is specified
51627384 so the add is on the rows,
givingth e sums of the columns.)
+\ TABLE
1 3 610 (The operator acts on the last dimension)

50 110 180 260

TABLE,13 14 (TABLE is joined with the vector 13 14.
123413 This takes place at the last dimension,
50 60 70 80 14 the columns making a new column)

TABLE,[1] 13 14 1516 (This vector is joined at the

1234 rows, making a new row.)
50 60 70 80
13141516
N TABLE (The rotation is across the
4321 columns. The same effect could be]
:2"92"g2" 72 e ntcejkgxgf"d{"N]4_ VCDN
N[1]TABLE (The rotation is across the rows)
50 60 70 80

1234

APLX Language Manual 180

f Zilde

Zilde is a primitive constant, which contains an empty numeric vector. It is equivaknota s 2

Z1))

TFKURNC[")) """"" 8" Gorv{"ejctcevgt"xgevaqt

o

[
— 5N
-+

(@]

TFKURNC["F" o "6"Gorv{"pwogtke"xgevqt

PH'_|(I—|'
- Nx
Cr—«+H

o
o
o

| Statement Separator

The| ("diamond") character acts as a statement separator, which allows you to place multiple
statements on a single line. This works either in a foncor in deskcalculator mode. The lefhost
statement is executed first:

SV[g6" | "RTKEG3407"] "SV[O6RTKEG
10

QTY
4

PRICE
2.5

If an error occurs within one of the statements, execution is abandoned (the remaining statements are
not execued).

The statement separator can be used with structamettol keywords:

<Tgrgcv"5"] "$Pq#3$"| "<Gpf
No!
No!
No!

APLX Language Manual 181

h Line Editor

h opens or closeinction definition modea simple line editor (or 'del' editor) for editing functions,
operators amh classes. Although largely obsolete because APLX offers powerstreen editing
facilities via the Edit menu QEDIT , it is retained for compatibility with older systems. It is also
sometimes useful for creating very small functions.

Editing function s and Operators

(For brevity, we use the word 'function’ in this section to denote eitherdedimed functions or user
defined operators).

h followed by a name or function header (for a function which does not already exist in the
workspace) opens definition mode. If the function already exists, you should follow it with just the
name, not the full header.

The editor prompts you with the neine number, in square brackets. (Note that the function header is
line 0.)

To enter a line for the line number which is being shown, just type the line. When you press Enter, the
line will be fixed and you will be prompted with the next line number.

By entering line numbers and other characters in square brackets, you can control the editor, as in the
following examples:

hPCOG] T_ pvgt"gfkvgt."qrgp"hwpevkgp"PCOG. "nkuv"yjqgng"
1 T_ Nkuv"hwpevkgp"*gpeg"{gw"jcxg"qrgpgf"kv+

] T6 _ Nkuv"htgo"nkpg"6"qgpyctfu

[3] Overwrite line 3

[3] ... Overwrite line 3 immediately

[5.1] Insert new line after line 5
[&] Delete line 2 from the function

]6T8_"""""Rnceg"ewtuqt"cv"nkpg"6."ej ctcevgt"rqukvkqp"8
]6T2_"""""Rnceg"ewtuqgt"cv"gpf"qgh"nkpg"
]2T2_"""""Rnceg"ewtuqt"cv"gpf"qh"vj g'hwpevkqp jgcfgt

To insert a line, use a fractional line number between the lindersof the lines on either side of the
insertion point. For examplg.1] will insert a line between existing lines 3 and 4 (and you will be
prompted with3.2] as the next line).

Note that you can edit the line number itself. This has the effect ofrgpghe line to the new
position, either inserting a new line, or overwriting an existing line.

When you have finished editing, type anoth@haracter to end the edit session. Lines will be
automatically renumbered in sequence 1 to N, to allow for any insertions or deletions.

APLX Language Manual 182

Defining or editing a class using the line editor

The line editor can also be used to create or edit a class, intheusame way as it is used to edit a
function or operator. To define a new class, open the line editor by entering a line which begins with
the del ©) character, is followed by the header line of the class (optionally including a parent class
name and lcalized names, as per the canonical representation), and which ends with a left curly brace.
APLX will open the class definition, and prompt you with the name of the class in curly braces as a
reminder that you are in classlit mode. For example, we camrate a new clasphere which

inherits frompPoint :

hUrjgtg"<"Rqgqkpv"}
{Sphere}:

You can then define properties by entering lines in the same format as the canonical representation of
a class. After each line, APLX prompts again with the class name enclosed in curly braces:

Tcf kwug?2
{Sphere}:

You canalso enter methods by using the del editor in the normal way (you will be prompted with the
line number until you finish editing the method, then return to ele$isition mode and again be
prompted with the class name):

hTgXgnwog
[1] Tg3055 5555556*63+6chkwu,5
[2] n
{Sphere}:

Finally, exit from classlefinition mode by entering a single right curly brace:

}

The canonical representation of the class defined in this way would then be as follows:

TCR 'Sphere’
Sphere : Point {
Radk wu ¢ 2
TgXq
g305 555555506*03+06Tcf kwu, 5

-~ St 4 >

APLX Language Manual 183

R Lock

You can lock a usedefined function, operator or method by entering or leaving the line editor using
the 'deltilde’ character®) rather than ‘delh|.

Once a function has been locked;an be run, but cannot be edited or displayed. If you try to edit it, a
DEFN ERROR will be reported.

If execution of a locked function is stopped because of an error or interrupt, the function is never
suspended, but instead is abandoned. Any error wathocked function will cause a DOMAIN
ERROR to be signalled to the caller.

APLX Language Manual 185

Section 3: Errors

APLX Language Manual 187

Overview of error handling and the State Indicator

Errors in calculator mode

If you enter a statement containing an error in calculator mode, APL respidhds error message.
For example, if you attempt an operation on unsuitable data, you normally get a domain error:

3"3"2"33"1"3"3"2"2
DOMAIN ERROR
3"3"2"33"1"3"3"2"2

AN

This error has occurred because the OR primitive function openaliesn values 0 and 1, not 11 as
supplied in the left argument. As the example shows, the statement containing the error is displayed
with an error indicatory) marking the point at which the APL interpreter detected the error.
Depending on the versiaf APLX you are running, and your system preference settings, error
messages are usually displayed in red, as shown above.

To correct an error in calculator mode, simply retype the statement correctly, or alternatively use the
recaltline key (usually CtftUp Arrow, or CmdUp Arrow on the Macintosh) to recall the statement,
then edit it and renter it. In most versions of APLX, you can also correct it directly in the window,
and then press Return or Enter teex@luate it.

Errors in user-defined functionsor operators

If an error is encountered during execution of a-aedined function or operator, execution stops at

that point. The appropriate error message is displayed in the session window, followed on a separate
line, by the name of the function canmting the error, the line number at which execution stopped and
the statement itself:

LENGTH ERROR
ECNE] 4_" Tgroa. [+
N

The above example shows that execution stopped in furcAiobat line 2.

The Debug Window

As well as displaying the ar in the Session Window, desktop editions of APLX will normally
display the Debug Window if an error occurs in a wdefined function, operator, or class method.
This shows the function or operator in which the error occurred, and allows you to didi¢ the
immediately and continue:

APLX Language Manual

z | 1
Debug HELPJAVA:DEMO_TimeZone e (50)
File Edit Debug Attributes Tools Window Help
oo | LOGICAL UNIT NOT FOUND Resume at line:
‘,8“ DEMO_TimeZone[13] tzclasse’ jeva' DGETCL| 31 _| > 3| 4| X _J
DEMO_TimeZone;date;tzclass;tz;dateFormat;datelList
DEMO[4] [1] A
[2] A Demonstration of using a TimeZone object 1in Java
[3] A =
[4] A First create a date
[51] datee' java' ONEW 'java.util.Date
[6] A
[7] A What 1is the date7
[8] Result of date.toString ' ,date.toString
[9]
[10] =
[11] @A To create a TimeZone object we need to call a static
[12] @A method in the TimeZone class
[13]» tzclasse fi‘.f—. OGETCLASS 'java.util.Time 2
[14] tzetzclass.getTimeZone 'America/Los_Ange
[1S] =
[16] =~ Could also call the stat1c method d1rect1y =
raiza > o 5 (A _NDCALL - 3 T, - o 3.0
KB: StdAPL |Fn: DEMO_TimeZone 4| | oy

= _J

In this example, an error has occurred on line 13 of the function, so execution has stopped there.
Normally you would edit the incorrect line in situ (in this case correcting the spelling mistake ‘jeva’
instead of 'java’)and then press the Run button (the solid triangular arrow) to continue execution. You
can also resume at a different line (by dragging the small green position indicator, currently on line 13,
or by using the 'Resume at line' control), or abandon theidumnioy pressing the Quit (red cross)

button.

Interrupts

A function or operator can also be halted by the user hitting the interrupt key (usuaByeztklon
Windows, CmdPeriod on the Macintosh, or G under Linux). A single interrupt causes APLX to
complete the line of code it is executing before stopping. Two interrupts in quick succession cause it
to stop as soon as it can, even if it is executing a single calculation which takes a long time (for
example inverting a matrix with). TheT E Q Bystemfunction allows interrupts to be disabled.

Again, on desktop editions of APLX, the Debug window will appear if you interrupt adesieed
function, operator or method.

The State Indicator

It may be that the function at which execution halted was chifeahother function. You can inspect
a system variable callegu ktheState Indicator, or use the system commays , to see the state of

play:

TSI
C[2]

B[8]

A[5]

APLX Language Manual 189

This display (often referred to as the 'Sl Stack’) tells you that functicas called from line 8 of
functionB which was itself called fromrie 5 of functiom.

The asterisk on the first line means that the function named on that Bnspgnded The other
functions arependent; their execution cannot be resumed till execution of function C is completed.

If at this point you executed ain@r function D, which called functiorg, and at line 3 of a further
error occurred, the state indicator would look like this;

E[3] *
D[6]
C[2] *
B[8]
Al5]

Effectively it contains records of two separate sequences of events;

E[3] *
D[6]

You can clear the top level of the state indicator (i.e. the record of the most recent sequence) by
entering the branch symbiobn its own;

A
TSI
C[2] *
B[8]
A[5]

In this example, anothérwould clear the remaining lebgnow the top level) and restore the state
indicator to its original (empty) state.

Alternatively, you can clear the entire state indicator at any stage by using the system command
)SICL .

Action after suspended execution

If you want to resume executiontae point where it stopped you can do so from the Debug Window
as described above, or by using the symifollowed by the line number. If, for example, execution
halted at line 3 of, to resume at that point you could type:

h5

A system variablg E montains the current line number, so you could achieve the same effect by
typing:

hTEN

APLX Language Manual 190

You don'thave to continue from the point where execution was suspended. You can specify a line
other than the current line:

h 6

or

hTEN- 3

Equally, you can specify execution of a different function.

Editing suspended and pendent functions

What's perhapmost likely after an error in execution of a function is that you'll want to edit the
function containing the error. (It's marked witln the SI display and, as you may remember, is
described as suspendedlinction.) This is done in the normal way bging)EDIT (or usingh and the
function name to enter the del editor), and then making the required correction, or directly in the
Debug Window.

It is possible that after editing the function you may get this message:

SI DAMAGE

This indicates that you've done somethiigch makes it impossible for the original sequence of
execution to be resumed. No action is necessary other than to use the system canomatodclear
the state indicator.

What you cannot do after a halt in execution is to edit any of the pendenofisndthey are the
functions in the state indicator display that aoé marked with an asterisk:

TSI
E[3] *

DI[6]

C[2]

B[8]

Al5]

An attempt to edit a pendent function using the Del editor will produbs-8 ERROR

h C
DEFN ERROR
h C

AN

Similarly, you can edit the function usingpIT A but APLX will not let you save the changes
because the function is pendent. You will get the error message "Cannot fix eBjaattion is on)SI
stack”

If you want to edit a pendent function, simply clear the state indicator)sa1g.

APLX Language Manual 191

Error trapping

You can specify in advance what should happam iérror occurs during execution, in which case that
error will not cause execution to stop. For example, if you wrote a function which invited the user to
type in some numeric data, you might foresee the possibility that he or she would tympemenic

data instead. This would cause an error. APLX allows you to ‘trap’ the error at runtime. There are two
main ways of doing this:

1 A block of code (including any functions called from within the block) can be executed under

errortrapped conditions using@ry ...EndTry . If an error occurs, control passes to the
:Catchlf Or :CatchAll sections.

1 Simple error trapping on a single line or expression can be achievediusjpghich allows
an alternate line of code to be executed in the event of an erfoG Brhich executes code
under error trapped conditions and returns a series of result codes. These are compatible with
IBM's APL2.

APLX also implements the oldgrG Tstyle of erroftrapping, which specifies a line to be branched to
if an error occurs. Use gf G Tig not recommended for new applications.

In general, it is probably best not to mix different styles of énaping in a single function.
However, if you @, and an error occurs in a line where more than one error trap is live, then the error
trap which will take effect is the first of:

1. TGC

2. TGE

3. :Try...:EndTry
4. TGTZ

Error -related system functions

A number of system functions are available for finding ouésghan error occurred and why, or for
simulating an error. These include:

1 T G Twhich can be used to signal an error (see also the ABhtpatible equivalent G
1 T G Twhich displays the current error message (see also the-&dthpatible equivalent G)o

1 T N Gwhich contains the error code and line number for the most recent error. Each kind of
event that can be trapped has an error code. A DOMAIN ERROR, for example, is number 11.
(See alsg G which holds the last error code in a format compatible with ZPL

Other debugging aids

1 T UV @bows you to set 'breakpoints', i.e. specify that a function should stop at a given line.
(Normally, the Debug Window will then be invoked). On desktop editions of APLX, you can
also set or clear breakpoints by clicking e inenumber area of an Edit, Debug or WS
Explorer window.

1 TV TCean be used to display a record of the results when certain 'traced’ lines are executed.

APLX Language Manual 192

Error trapping using :Try...EndTry

Syntax:

Try

;éatchlf <boolean expression>
‘CatchAl |

EndTry

The block of code following thary keyword is executed, until either an error occurs, or a
:Catchlf , :CatchAll ,:End or:EndTry IS encountered.

If no error has occurred within thiery block, execution transfers to the statement aftergine or
‘EndTry .

If an error occurs in thary block (either in the statements in this function, or in any functions called
from it), control transfers to the firstatchif statement (if any), and the boolean expression is
evaluated. If it is true, thielock of code following thecatchif is executed, and execution then
resumes after thendTry or:End . If the expression is false, the same procedure is followed for any
further:Catchif blocks in the sequence. If none of the tests is truecthehAll block (if any) is
executed. It is permissible to have as manaychif sections as you like.

Once an error has been trapped and control passedd@rai or :CatchAll statement, the error

trap is disabled. Thus, if a second error occurs, it will ndtdgped, and the function will stop in the
normal way (unless the whaotery... :EndTry sequence is itself executed under another error trap).
Try..:.EndTry blocks can be nested.

Typically, you use thecatchif statement to catch specific types of errgrjdoking atT N Gar T GV

For example:

thC" FKXKFG" D

3_""6"Rtgvgevgf"fkxkfg

2] :Try

5 "6"Fq f k x k u k g ptrapped fcapditiongt t gt
6 _ TgCED

7 _ "<Ecveth 33’?I3|'[NGT
8_"""""6"FQOCKP"GTTQT"qeewttgf
9 """""TgZ

8] CatchAII
""" d" Uqogtorpecurrgd " gt
10] '‘Unexpected error. The message was:'
LTy Teo

APLX Language Manual 193

4 DIVIDE 3
1.333333333

4 DIVIDE O
0

DIVIDE 4

Unexpected error. The message was:
VALUE ERROR 5
FKXKFG]6_"""TgCED

AN

APLX Language Manual 194

Error Trapping * TGQ.GE +

Note: The use df G & now deprecated, unless you need to retain compatibility with IBM's APL2. For
most cases, we recommend that you use the struetorgbl error trapping mechanisigirry
:Catchlf :CatchAll :EndTry) instead.

T GandT G provide statemerevel error trapping, using a syntax which is compatible with IBM's
APL2.

T G allows an APL expression to be executed under error trapped conditions. The right argument is a
character vector containing an expression texezuted. The left argument is a character vector
containing the APL expression to be executed if the right argument encounters an error or is
interrupted.

If an error occurs in the alternate code gf@acall this is not trapped but is handled in theadf (or
nontrapped) manner.

T G allows an APL expression to be executed under error trapped conditions. The right argument is a
character vector containing the line of code. If the expression contains an error or is interrupted then
T G Eeturns a returcode plus the error code given Py v 0

T G 6 a numeric vector containing the error code associated with the last error that occurred. The first
integer indicates the general class of the error. The second integer indicates the specific nature of the
error. T G ¢an be used to identify the possible source of an error.

T G @ a character matrix containing the error message associated with the last error which occurred.
The message contains the error description, the function name and line number wheepti@nexc
occurred, the line of APL code where execution stopped, with a(carginting to the last character
interpreted.

T G s a function which simulates an error and causes execution of the active function or operator to
stop. In the monadic form, thigght argument is a two element numeric vector containing the error

code. If the code is defined then the appropriate error description is displayed. If the code is undefined
then no error description is displayed in the error message. If the right argisraero or empty then

no error is signalled. If the right argument is a character vector then that vector is displayed as the
error description. In the dyadic form the left argument is the character vector error description and the
right argument is thanteger error vector.

If an error occurs in a locked function then the error message just gives the name of the function, with
no internal details. The error description will usually be DOMAIN ERROR (sometimes WS FULL or
INTERRUPT).T G gimilarly gives ndndication of the true nature of the error. The same is true if a
locked function calls an unlocked function which encounters an error. No internal details of the error
are given. If a function containinglaG or T G Btatement is locked this does noteatfthe behaviour

of the error handling internal to the function.

APLX Language Manual 195

In the first exampleT G & used to handle the error:

hTgC" FKXKFG" D

]3_"""Tg)C)"TGC") CED)

h n n n

3 DIVIDE 2
1.5

3 DIVIDE O (Alternate execution invoked - returns
3 left argument)

As an alternativeT G is used:

hTgC" FKXKFG" D

]3_""")CVVGORV"VQ" FKXKFG"D["\GTQ"GTTQT) "TGU*D?2+17"
]4_"""T§gCED

B

3 DIVIDE 4
0.75

3 DIVIDE O (Error signalled)
ATTEMPT TO DIVIDE BY ZERO ERROR

3 DIVIDE 0

N

T¢o" ®t o mx TGO"eqpveckpu"vjg'toguuci
ATTEMPT TO DIVIDE BY ZERO ERROR

3 DIVIDE 0

N

§ EM
331

TGy m e mx TGV eqpvekpu"vjgtcerrtagl
54

Finally, controlled execution allows the results and error messagey)ifcaine studied:

TEC '3+4'
100 0.75
TEC '3+0'
0 54 DOMAIN ERROR (Three element nested vector result)
3+0
N

§ EC '3:0'

APLX Language Manual 196

Error Trapping * TGT Z +

Note: The use df G Tig now deprecated. We recommend that you use the structonéeb| error
trapping mechanisriTry :Catchif :CatchAll :EndTry) instead.

The system functiom G Talows you to set an error trap which will cause control tG pas given
line in a function, if an error occurs:

hHQQ=\
]3_"""\VgTGTZ" NCDGN""""""" "\ "yknn"eqpvckp"vjg"rtgxko
Control will pass to LABEL when an error occurs in this function, (or a called function which does not
haveerror trapping set) G Traturns the previous trap value. When an error occurs the normal error
display of error message and line number is suppressed. A right argumentfos 0 $nippresses the
trap.

A nonrerror trapped function, called by an err@pped function, will behave as if it is locked. A
branch will again take place to the designated line in the calling function.

Having transferred execution to an error handling routine, it is important to know the type of error that
has occurred and alsdere it occurred. Sometimes the APL function can attempt some sort of
corrective action, but often the error is logged and some message passed to the user.

The functionT N Greturns the error code number (see below) and the line where the error took place,
as a two element vector. If, when error trapping is active, an error occurs, the line number will refer to
the most recent function to which the error has been pragh{ad. the error trapped function).

To read the error message, the system fungtiorr shows the character vector that APLX would
normally print with a Carriage ReturnT Thetween lines. Inside a locked functigné Twall show

the error message thabuld be displayed if the function were unlocked. Outside a locked function,
however,T G Ti®set to be an empty vector for security reasons.

AHQQ=\ =GT

13 _"""\§gTGTZ" GTT

[2] 100x'A

[3] 'THIS LINE WILL NOT BE REACHED'

[4] ERR:'INTERNAL PROGRAM ERROR

17 _"""GTYTT"TDQZ"TGTO" 6" HQ

]8_""")GTTQT" OGUUCI G<" ") . *
h

"VJG"TGTO" XGEVQT" KPVQ" C
]3=_+.)"QP" HWPEVKQP" NKF

Example of Error Trapping

It is possible to encounter the @rmessage WS FULL if you try to carry out operations using large
arrays. Rather than have your function stop, you might like to check for this error state and undertake
corrective action.

APLX Language Manual 197

hCFFWR=Z=FCVC

3_""O6CFFU" WR" CNN" VJ'(D'THHW'CEIDI'[ERIED WR

4 _""zZzgTGTZ"GTT" 86" """ etz KUY WUGF" VQ" JKFG" VI
3] START:'ENTER A NUMBER'

6 _ 'FCVCQl’T" tegrrmrmrnnmmmmnnm QCMG" KV'VIG"PGZV" NQY
7 _) VI G UWO" QH" VJG" HKTUV"). *OFCVC+.)" PWODGTU" KU<
8 _" "-lSFCVC

9 "h2vrrgrrmrmr e GPEY QH" VI G" HWPEVKQP

"GTT<h*3I3HTNGT+1TGCNGTT 6" GTT"EQFG" 3" KU" YU" HWN
HE NUMBER YOU ENTERED WAS TOO BIG TO USE, TRY AGAIN'
_"AUVCTV
"TGCNGTT<" """ "AN'ERROR HAS OCCURRED WHICH IS NOT WS FULL
"YGTTOQT" V[RG") . *O3HATNGT+.)" QP" NKPG"). O3HTNGT
SSAGE IS
"'TGTO
" h

9

ITI |

1

WWLRwwwT

\I@wal\.)—ﬂ

Make sure that you have some escape route from the error trap routine, otherwise amyhanrtirat
section of the function will cause an uninterruptible loop. (The Interrupt key or menu item also causes
an error- type13)

Error Signalling

If some error report is to be made to the user of the system, it is useful to be able to modifglthe us

APL error messages, which may not be very meaningful to the end user. This can be carried out by the
functionT G T J GG Taan be used to force a standard APL error report, or, if used with a character left
argument, it will display those characters and assign the error code in its right argumerm@ 100

Here is an example wheTeG Tig used to make sure that theeu hasn't hit the interrupt key
accidentally:

hHQQ=FCVC

13_ TGTZ" GTT" g e yogyr GTTQT" VTCR

Q]I.ENTERYOUREXPRES&ON

]5_"""FCVCYg &

[4] THE RESULT IS:'

1]7_"""n"FCVC

]8_"""hAN

]9 """ GTT<"h*35i 3ATNGT+1PQVKPV6" " " PQV" KPVGTTWRYV

[8] 'DID YOU MEAN TO HIT INTERRUPT? (Y/N)

1 _"""h*)[)i 3AE+1IN"|] "TGTU" 35" 6" UKI PCN" KH" EQPHKTOGF

]32 ""PQVKPV<"TGTU"3ATNGT" 6" """ """ UKI PCN" QVJGT" GTTC
h

If the right argumat is a number in the range 1 to §1G Twill display the standard APLX error

message. As you will see later in the chapter, some error numbers are undefined, and in these cases

T G Twill display UNKNOWN ERROR TYPE SIGNALLED. If the right argument is anpy

vector, no error is signalled. Used with a character left argument, the error message may be altered. Ar
empty vector left argument () will suppress the error message.

RT§gCX" D
]3_""")PWOGTKE" CTI WOGPV" RNGCUG) "TGTU" *6?TFT"D+1:
]4_"""Tg*-1D+ESD

APLX Language Manual 198

AV123
2
AV 'ABC'
NUMERIC ARGUMENT PLEASE
AV
N
TLER
80
TSI

(empty response) (the function has b een halted)

APLX Language Manual

Error Codes* TGV +

Error types reported by G wre listed below. Note that some codes are unassigned.

00
01
02
11
12
13
14
18
19
110
111
112
113
21
22
23
24
25
210
31
32
51
52
53
54
55
56
61
62
63
64
65
66
67
68
69
610
611
612
613
614

NO ERROR

UNKNOWN ERROR

DEFN ERROR

INTERRUPT

SYSTEM ERROR

WS FULL

SYSTEM LIMIT SYMBOL TABLE

SYSTEM LIMIT ARRAY RANK

SYSTEM LIMIT ARRAY SIZE

SYSTEM LIMIT ARRAY DEPTH

SYSTEM LIMIT PROMPT LENGTH

SYSTEM LIMIT UNASSIGNED

SYST EMLIMIT TOKEN LIST LIMIT

SYNTAX ERROR OPERAND OR RIGHT ARGUMENT OMITTED
SYNTAX ERROR ILL FORMED LINE

SYNTAX ERROR NAME CLASS

SYNTAX ERROR INVALID IN CONTEXT/NONCE ERROR
SYNTAX ERROR CO MPATIBILITY SETTING PREVENTS THIS
SYNTAX ERROR STRUCTURED - CONTROL ERROR
VALUE ERROR NAME WITH NO VALUE

VALUE ERROR FUNCTION WITH NO RESULT
VALENCE ERROR

RANK ERROR

LENGTH ER

ROR

DOMAIN ERROR
INDEX ERROR

AXIS ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR

UNAUTHORISED FILE ACCESS
FILE NOT IN SYSTEM
COMPONENT NOT IN FILE

FILE AL LOCAION EXCEEDED
FILE OR COMPONENT HELD

FILE MAINTENANCE IN PROGRESS
USER ALLOCATION EXCEEDED
FILE IN EXISTENCE

FILE I/O ERROR

DISK FULL

USER NOT IN SYSTEM

DATA DAMAGED

FILE LOCKED

LOGICAL UNIT NOT FOUND

199

APLX Language Manual 200

Error Codes(T NGT +

Errors reported by N Gare allocated integer Error Codes. Some error codes are unassigned, but these
codes may still be used by ties Tfunction.

0 NO ERROR, OR ERROR RESET

I 3""""QWV" QH" TCPI G" CTI WOGPV" HQT" TGU

1 WSFUL L 17 FILE I/O ERROR

2 SYNTAX ERROR 18 FILE NOT IN SYSTEM

3 INDEX ERROR 19 UNAUTHORISED FILE ACCESS

4 RANK ERROR 20 COMPONENT NOT IN FI LE
5 LENGTH ERROR 21 FILE ALLOCATION EXCEEDED

6 VALUE ERROR 23 FILE MAINTENANCE IN PROGRESS

7 VALENCE ERROR 24 FILE OR COMPONENT HELD

8 AXIS ERROR 25 INCORRECT COMMAND
9 SYSTEM ERROR 26 DATA DAMAGED

10 SYSTEM LIMIT 27 USER NOT IN SYSTEM

11 DOMAIN ERROR 28 USER ALLOCATION EXCEEDED

12 SY MBOL TABLE FULL 29 FILE IN EXISTENCE

13 INTERRUPT 40 DISC FULL

14 DEFN ERROR 41 FILE LOCKED

15 UNKNOWN ERROR 42 LOGICAL UNIT NOT FOUND

16 NONCE ERROR 43 STRUCTURED CONTROL ERROR

APLX Language Manual 201

Error Messages

The various error messages that APLX will generate are shown below:

Message Problem and corrective action
L S S S) (1 R A R (AR A O
AXIS ERROR The axis used is incorrect or the operator is

not defined with axis or the axis specification
contains invalid characters.

BUFFER FULL Input line too long.
Action: interrupt the display and shorten the
line.

COMPONENT NOT IN FILE The file does not contain the specified

component, or the function was not found in
the shared library.

COPY BUFFER FULL Name list of JCOPY command is too long.
Action: shorten name list.
DATA DAMAGED Error detected in the internal format of a
variable.
FGHP" GTTQT""* " ®mnrmnmmmmmmmmwmmnttyigp"wukpi "h"vg"etgcvg

- function name duplicates name of an object
already in the workspace, invalid header
Action: change name of either, or erase
object, correct the header.

- the name you have used is invalid or locked.

Whenusing h" vg"gfkv"c"hwpevkqgpc<
- you've included the argument names with
the function name when attempting to edit
an existing function.
- the function is locked.
- the function is pendant. (see the section on
Error Handling)

When editing body of function:
- improper attempt at function line editing,
for example a [, a number, but no closing].

DISK FULL File dataspace is full

DOMAIN ERROR You've used an APL function, but the

arguments you have supplied are outside the

domain of that function. For example:

- You've tried to divide by zero.

- You've tried to use one of the arithmetic
functions (+ - x +) with characters

- You've used fractional numbers with
functions which require whole numbers (e.g.
ogpcfke"S"qt" A+

FILE ALLOCATION EXCEEDED The file has reached its maximum allowed size

APLX Language Manual 202

FILE IN EXISTENCE Attempt to rename a file to an 1.D. which
already exists
FILE 1/0O ERROR The host operating system has signalled to APL
an error in some disc - related operation
FILE LOCKED An incorrect file password has been used
FILE NOT IN SYSTEM The file that is being accessed does not exist
FILE OR COMPONENT HELD The operation cannot be performed due to an
outstanding file or component hold by another
user
INCORRECT COMMAND You've typed a command starting with), but

the remainder of the command is not correct or
not recognised.

INDEX ERROR When carrying out an indexing operation, you
have used an invalid index. For example:
- You have asked for element [5] of a 4
element vector

INTERRUPT User interrupt.

/0 ERROR APL encountered an error during input/output.
Rtgdcdn{"jctfyctg"hcknwtg"qt"knngic
table.

LENGTH ERROR Arguments are of unequal lengths, or the axes

where the lengths of the arguments must
match are unequal. For example:
23+345

LOGICAL UNIT NOT FOU ND The logical unit requested does not exist,
or the shared library was not found, or the
external class was not found.

NONCE ERROR The expression you have t yped is syntactically
correct, but the interpreter does not support
it at the moment.

NO SPACE Not enough disc space to perform)COPY or
)SAVE command

NOT COPIED.... Attempt to)JPCOPY an object which exists in the
active workspace.

NOT ERASED.... The objects shown were not found by the)JERASE
operation.

NOT FOUND..... Workspace does not contain the object.
Action: check spelling of workspace or object
name.

NOT GROUPED,NAME IN USE Variab le or function already has the name,;
Action:change name of group or erase conflicting
object

NOT SAVED: THIS WS IS WSID Normally occurs on attempt to save a
workspace using a name which is not that of

APLX Language Manual 203

the active workspace and which duplicates the

name of a workspace in the library. You have

used the)SAVE command in the form
)SAVE NAME

to rename and SAVE the workspace.

Action: rename the active workspace using

JWSID, then save.

NOT SAVED, WS LOCKED Occurs on attempt to save an active workspace
with the same name as, buta different
password from, a workspace already in the
library. A locked workspace cannot be loaded,
dropped, copied or saved - over without
knowing the correct password. To change a
password on a saved workspace,)LOAD the
workspace,)DROP the workspace, then resave
with a new password.
Action: change the password of the active
workspace using)WSID.

NOT WITH OPEN DEFINITION The command cannot be processed while you
are editing a function.
Acvkgp<""enqug""vjg"fghkpkvkgp"ykv]j
issue the command.

RANK ERROR Function not defined for data of this structure
or arguments are of incompatible rank.
Action: provide argument of correct structure
(single number/character, vector, matrix, etc)

S| DAMAGE A pendant or suspended function has been
replaced or removed by YCOPY or)JERASE. Label
lines of a suspended function have been
edited. A function not at the top of the Sl
list has been edited, erased or copied. A
function on the Sl list has had its header
edited.
Action: clear the state indicator by)SICLEAR.

STRUCTURED CONTROL ERROR A Structured Control keyword has been encountered
but the context is wrong. For example, an :End
may have been encountered but there is no current
block active, or you have branched into an
indented block.

Action: Check the block structure keywords
match up.

SYMBOL TABLE FULL Too many names in use for the current symbol
table size.
Action:)SAVE the current workspace,)CLEAR the
active workspace, increase the siz e of the
symbol table using)SYMBOLS,)COPY the saved
workspace back into the active workspace.

SYNTAX ERROR] - formed expression, or incorrect number of
arguments for a function. For example:
- You have used a one argument function
without a right argument.
- You have unb alanced parentheses

SYSTEM ERROR An internal hardware or software problem
such as a memory fault. After this error a

APLX Language Manual

clear workspace is loaded automatically.

SYSTEM LIMIT One of the system limits has been exceeded, for
example the rank of an array.

UNAUTHORISED FILE ACCESS The file's access matrix does not allow the
operation from this user number.
Action: modify access matrix

USER ALLOCATION EXCEEDED User has too many files or the aggregate size
of the file exceeds the user's quot a.

VALENCE ERROR A function has been used with too many or too
few arguments - for example a left argument for
a monadic function or a right argument only for
a dyadic function.

VALUE ERROR The name you've asked for does not exist, or
you have referred to the result of a function
which does not return a result.

WS FULL Insufficient workspace. The active workspace

cannot contain all the objects requested.

During a)COPY command no objects are copi ed.

Action: erase some variables or functions to
make more space. Clear the state indicator
using)SICLEAR.

WS LOCKED You ha ve used an incorrect password for a
workspace that was saved with a password.

WS NOT FOUND The workspace requested is not in the
specified library or logi cal unit.
Action: check the location of the workspace
and the spelling of the workspace name.

204

APLX Language Manual 205

Section 4. Component File Systems

Component files are APL files in which you can statateary APL arrays or overlays. APLX
supports two different component file systems. The first of these is based on-tHeedis primitives
N" 1" qassimplemented in APL.68000), and the second is based on system functionsstohlas

APLX Language Manual 207

N 'based File System

The APLXN 'based File System uses four primitive functions to transfer APL data between the active
workspace and a file space locateda disk storage device:

N File Read ('‘Quad - Read)
n File Write ('Quad - Write")
o] File Hold ('‘Quad - Hold")
0 File Drop ('Quad - Drop")

APL files are identified by a file number, and components are accessed by component number. A file
may be kept secure from other users by passwords, or by one of two methods of access control:
control of access by user number, and a file or component hold facility

The file system has been designed to facilitate casual use of the system without reducing the security
features which may be required by more complex applications. Files are created automatically when
the first write operation is performed.

Individual canponents may be any valid APL data, including overlays. The components keep their
type and shape when stored and retrieved. Components may be added or inserted at any point in a file
and any component may be deleted, even if it is located in the midallief

APL files are located in a 'data space'. There may be several 'data spaces' throughout the system. Eacl
'data space' is independent of all other 'data spaces'. A utility program is supplied with APLX to create
and maintain these 'data spaces', thiglwill be detailed in the system dependent notes. All file

operations allow subscripts to select, via a logical unit number set inadlgewRirction, which ‘data

space' is to be used in a given operation.

Basic File Operations

A file consists of a 4eof sequentially numbered components, each of which may be any APL variable.
The components are referred to by their position within the file. Deletion of components or insertion
of components within the file automatically renumbers the file in a maimeéarsto the renumbering

of APL function lines during function editing. Files are created by the first valid write operation.
Extensions to the buiin file functions allow information about the files, and their components to be
read.

For each 'data spac the file system keeps tabs on the number of files each user owns and the size of
those files. Each user has quotas which limit the number (if any) of files he may own, and the
aggregate size of those files. In addition to the limits on a user, tleegeia@ia restrictions on the size

of each individual file. The user is free to alter the default file size (which varies from system to
system) upwards or downwardsubject, of course, to his overall quota.

APLX Language Manual 208

Advanced File Operations

Each user of APLX cahe allocated a user number (showrsky T §; which allows each user in a
multi-user environment to assume a unique identity. Individual APLX files are tagged with a User
Number, and have an associated File Access Matrix which indicates which users sarirecte

and what operations they may perform. Users will be allocated their user number by the logon
procedure adopted by their system. Each user can thus ‘'own' a number of files and the user can grant
or deny access to these files.

The Access Matrixs two columns wide. The first column is a list of user numbevgh O being

taken to mean ALL users. The second column is a list of integers which indicate the access privileges
for the indicated user. When a file is created, the default access miatnig ahly the owner to access

it, and grants to the owner all accesses excepiielete. An Access matrix may have a maximum of

29 rows.

The access privileges can be given in two ways.

A positive privilege states what the user can do, and a negativiegeigtates what the user cannot
do.

The privilege code is effectively a number generated by adding various powers of 2 (1,2,4,8,16,....),
each power of 2 corresponding to a particular privilege. Positive privilege codes are merely the sum of
the individwal privileges granted, whilst negative privilege codes are generated by ada@ingd the

result of negating the sum of all the privileges denied.

Power of 2 Operation

0 (O Read components

1 (2 1 N4N"5N
2 4 Insert Components

3 (8) Append Components

4 (16) Replace Components

5 (32)

6 (64) Delete a File

7 (128) Delete a Component
8 (256)

9 (512 Set File Allocation

10 (1024) Rename

11 (2048) Hold/Release File
12 (4096) Hold/Release Components

13 (8192)

14 (16384) 6 N 9N
37"""*5498: +°' 3N
38"""*87758+" 4 N
39" " "*353294+" 5 N

18 (262144)
19 (524288) Read Access Matrix
20 (1048576) Write Access Matrix

APLX Language Manual 209

For example:

Privi lege Meaning

0 No Access
1 Read Only Access
17 Read and Replace Access
"1 Full Access
“65 All Operations except Delete allowed

In addition to the access privileges afforded to users by the Access,itredritold mechanism

temporarily suspends file access by other users, whilst, for example, an updating operation is being
carried out. Hold may be applied and released to whole files or components, and holds may be applied
in two strengths write accessastricted and both read and write restricted.

For more information, see the descriptions of the filaccess primitives:

N"Tgcf."lgv"kphqg."Tgpcog
n"Yt kvg

0"Jgnfi1Tgngcug. "Ejcpig"Swqgvec
0" Fgngvyg

APLX Language Manual 211

N File read

One-argument form

Nreads data from a file. Thieght argument specifies the file and component number of the data
required.

The oneargument statement takes this forr} (means optional):

TgN"}] NKDTCT[_ "HKNG. "EQORQPGPV"}.WUGT. "RCUUYQT

LIBRARY identifies the library volume from whictata is to be read. If you omit the library number,
library O is assumed. If included, the library number is put in square brackets. (see also the section on
TOQWPV

FILE identifies the file the data is to be read from (a positive integer)

COMPONENT idenifies the data item you want to read (an integer). Component number 0 means the
last component, and if the component number is omitted, it is assumed to be 0.

USER and PASSWORD are used for file security in shared file applications; the defaals @K
and 0 respectively if omitted (both integers). User number 0 also means the owner.

N 3300 (Component 300 is read from file 3 on
267.133 on library 0. The data is displayed)
CgN" 4" 62 (The data in component 40 of file 2 is
read and is assigned to A)
CgN]5_"32"3;"3222";;""""*Fcvc""ku""tgcf"htqgqo"eq
10 on library 3, belonging to user 1000

and with password 99)

A variant of the onargument form is used for reading the file access matrix. Here the negative of the
file number is used and the value returned is the present access (Bat the discussion of file
access matrices above)

AGNJ 5" mmm e x /i g"hkng"ceeguu"ocvtkz'
library O is assigned to A)

Two-argument form

The two argument form o provides information about the files and components. The general syntax
IS:

T"§g"C"N"}] NKDTCT[_ "HKNG"}.EQOR. WUGT. RCUUYQTF

APLX Language Manual 212

The action ofNin this form is governed by the value of A, as the next table shows (library, file,

componentuser

and password are as defined for the one argument form). The file number is

required wha information is sought about a given file and the component number is only used when
information about a given component is sought. If the file number is omitted it defaults to O, as does

the component number.

A File no. Comp. no. Resu ltof N

1 FILE 0 The number of components in the file

2 FILE 0 A nine - element file description vector

2 0 0 An eight - element user quota vector

3 FILE CO MP A six - element component description vector

5 0 0 A vector of the file numbers belonging to
the user, in ascending order

6 FILE 0 Ath ree - element vector of file hold
information

7 FILE COMP A three - element vector of component hold
information

The file description vector comprises:

- File number

- Maximum allowed size in bytes

- Actual size

- Number of components

Date file was created, MMDDYY

- Time file was created, HHMMSS

- Date file was last updated, MMDDYY

- Time file was last updated, HHMMSS
- Bytes attributable to file overhead

O©CoO~NOUITAWN P
1

The user quota vector comprises:

- User number

- Aggregate file allocation quota

- Current aggregate file size

Number of files quota

- Number of files in existence

- Allocation assigned to a new file

- Free space remaining in dataspace

- Largest contiguous space left in dataspace

ONO OIS WN P
1

The component description vector comprises:

- File number

- Component number

- User number

Date component was written, MMDDYY
- Time component was written, HHMMSS
- Size of component in bytes

OO WNE
1

The file hold information request returns the following:

1 - Number of components held
2 - User holding the file (or 0)
3 - Hold restriction (0, 1 or 2)

APLX Language Manual 213

And finally, the component hold vector:

1 - Component number
2 - User holding the component (or 0)
3 - Hold restriction (0, 1 or 2)

For example:
7N]3_m2wnmor g fite©dh xotumes 1 t " g h
1117 10923478
4N]3_"339 2 "nnmmrnmmmmmmnxyigthkng"fguetkrvkgp" x
library 1)

117 500000 388864 60 10383 2429 22384 223357 56

File Rename

The file ma be renamed with a variant of the two argumefuinction. The general form of the
operation ig{} means optiongt

T§g* PGYHKNG. QXGT. WUGT"}. PGYRCUU +N"}] NKDTCT[_ QNF

NEWFILE means the new file number
OLDFILE means the aginal file number

NEWPASS means the new password (if a password is to be changed it must be specified in both
arguments)

OLDPASS means the original password
R, the result, is 1 for a successful rename; 0 if the operation failed

OVER means whether or ndite rename may overwrite an existing file (except when changing the
password).

OVER = 0 means that overwriting is not allowed
OVER = 64 means that overwriting is allowed

When overwriting, the file being overwritten must have delete accesmskthe password (if any)
must be correct. Otherwise a file locked error is shown.

APLX Language Manual 214

n File write

n writes data to a file. The left argument is the data. The right argument identifies where it's to go. If
the file specified as the destination alreadigsx the data is put in it. If it doesn't exisauses it to

be created first. A component may only be written within the range of existing components (either by
replacement or insertion), or be appended to the end of the file.

The full form ofr is asfollows (I means optional)

T"g"C"nA"}] NKDTCT[_ "HKNG. EQORQPGPV"} . WUGT. RCUUY

Ais any APL variable.
R (the result) is an empty vector with display potential off.

LIBRARY number identifies the library volume number to which the file ibeawritten. If you omit
the library number, library 0 is assumed. If included, the library number is put in square brackets. (See
alsoT 0 Q wipwva discussion on alteration of library numbers.)

FILE number identifies the file the data is to be writtenato ihteger).

COMPONENT number is the identifying number which shows the way in which the variable is to be
put into the file:

C=0 Append a new component to the end of the file

C=integer Replace an existing component, unless the number is 1 past thetkadilefwhen it is
appended

C=fraction Insert the component between the two integers on either side of C. Again append if C is
less than 1 after the end of filéf C is omitted, it defaults to O.

USER number and PASSWORD are used for file securityaneshfile applications; the defaults are
3 AT @rd 0 respectively if omitted.

3"5"9"p"g" 4t Vigtxgevqgqt"3"5"9"dgeqo
file 6 on library 0. If component 2
already exists it's overwritten.)

XCcTn]l]4_728"5"3297" """ *XCT"ku"ytkvvgp"vg"eqor
506 belonging to user 1075 on library 2)

*2"TQX" TPN"5+/434" 7" " """ "ohsOmthe Wworksgatefare p e v k
filed as an overlay, into file 12
component5 - ugg"cnug" T TPN. " TQX+

APLX Language Manual 215

A variant ofn is used for updating the file access matrix. Here the negative ofé¢hmufber is used
and the left argument is the new access matrix.

Note:

Writing an access matrix to a nexistent file is a way to create an empty file.

C" A"}] NKDT-GILE {{COMPONENT,USER,PASSWORD}

*3" 483222"1 3+n] 5iledon'libraty'3 fs seHto FULL access
for the owner)

OFile hold

One-argument form

Oin oneargument form alters the file allocation quota (how much the file may 'hold’). When a file is
first created it is restted to a given size. (This size will vary from system to system). The file
allocation quota may be examined ¥ial @ file may be created by reading the file allocation quota.
A file so created will have no components.

The general form ig} means opbtinal):

T"g" O"}] NKDTCT[_ "HKNG. CNNQECVKQP"}. WUGT. RCUUYQ

A file number of 0 means change the default allocation given to all newditeturns the old value of
the allocation quota.

(1] 120 200000 (The file allocati on quota of file 120 on
50000 library 1 is to be raised to 200000 bytes)

(2] 0 100000 (The default file allocation on library 2 is
50000 to be increased to 100000 byte s)

Two-argument form

This more common form adallows file access by other users in a shared file system temporarily to
be suspended. While a hold is in effect at the component or file level, the user issuing the successful
hold is granted exclusive a&ss to the held component or file to perform his file update(s). The
general form of the command is:

TgC" O"}] NKDTCT[_ "HKNG. EQORQPGPV"}. WUGT"PQ. RCUU

For a component number of O the entire file is held. The left argument A determiséetiggh of the
hold:

APLX Language Manual 216

0 means release the component or file, removing a previous hold
1 means restrict write access by others
2 means restrict read and write access by others
3" 0] 3_"342"5" """ "sttict write Actesstacomponent 3
1 of file 120 on library 1)
4" Q" ;2w Tgyytkev"tgeflytkvg'"ce
1 of file 98 on library 0 (default))
2" 0]3_"342"5rrmmrmnmnnn s Tgngcug"eqorgpgpv"5"qgh
1 on library 1)
2"O0"; :"2"3222 " m s Tgngecug"hkng"; :"qgp"nkd
1 belongs to user 1000)

In two-argument form,Oreturns a 1 if the operation was successful, O otherwise.

Effect of Access Matrix on Hold Operation

Some file operations are not affected bydfanction, and some others are blocked even to the
holder. The following table illustrates:

where:

Operation Effect of Hold
File Hold Component Hold
Read components 2 2
Insert Components 1+2 N
Append Components 1+2 0
Replace Components 1+2 1+2
Delete a File 1+2 N
Delete a Component 1+2 N
Set File Allocation 1+2 N
Rename 1+2 N
Hold/Release File 1+2 N
Hold/Release Components 1+2 1+2
Read Access Matrix 2 0
Write Access Matrix 1+2 N
0 means the operation is not affected by a hold
2 means that when the hold strength is 2 (read and write held),
only the holder may perform the operation. For components, the
block is only on the held components
1+2 means that when the hold strength is 1 or 2, only the holder may

carry out the operation. Again, for components, the block is only on
the held components

N means that when the hold strength is 1 or 2, no one may carry out the
operation

APLX Language Manual 217

O File drop

One-argument form

Deletes a component within a file. The right argument identifies the file or component to be dropped.
A file is identified by its file number and a component is identified by the number of the file it's in,
and its own nurer within that file.

The full form ofs is (} means optional):

T"g" 0"}] NKDTCT[_ "HKNG. EQORQPGPV"} . WUGT. RCUUYQT

R (the result) is 1 if the operation was successful, and O if not.

LIBRARY number identifies the library volume which holds file to be accessed. If you omit the
library number, library 0 is assumed. If included, the library number is put in square brackets. (see also
the entry o 0 Q widrdiscussion of library numbers)

FILE number is the number of the file to be accessed.

COMPONENT number is the number identifying the component to be deleted. If O the last component
is deleted. If the component is not specified, the number will be assumed to be 0.

USER number is the number of the owner of the file. If omitted, defaudtsitm , i.e. your own user
number. PASSWORD is the optional number designated as a security password 0 is assumed if the
password is omitted.

APLX will return a code 1 to indicate that it has successfully carried out the operation, otherwise a 0 is
returned.

6 2100 (Delete component 100 in file 2)
1

0[1]4 222 (Delete component 222 of file 4 which is
1 on library volume 1)

Two-argument form
Deletes an entire file from thestgm. The form ig} means optional):
TGWUGT" 6"}] NKDTCT[_ "HKNG.2."}WUGT. RCUUYQTF

where R, USER, LIBRARY, FILE, PASSWORD are as defined above.

Note: By default, a user is denied the privilege of deleting an entire file, even his owneirnoord
delete a file, the owner must first grant himself the deletion privilege by adjusting the Access matrix
(see section oR + 0

APLX Language Manual 219

T Hz Zamponent File System

As an alternative to the powerful multser component file system accessed using the fileitprés N "
n" Oy APLX also implements a second component file system similar to that used in many other
APL interpreters, with important extensions. This is based on the system furfcichs GCW® K G

THT Garrl so on.

T H z Aites are identified by a filmame, and created usimgd E T G.dFoiGeach APL component file, a
separate operatirgystem file will be created. When you want to use an existing file, you first 'tie’

(open) it usingr HV OGT H U V,kaed then you refer to the file by the tie number wiyich have

specified or which has been automatically allocated by APLX. (This is in contrastito thased

system, where a single 'dataspace' holds multiple APL component files, component files are always
identified by number, and there is no need & &ifile to use it.) Once the file has been tied,

components are accessed by component number. When you have finished using a file, you must close
it usingT HWP V @Bey are untied automatically when the APL task ends, but they are not untied
automaticdly when you)CLEAR the workspace OLOAD another workspace).

Components within a file are numbered sequentially, initially from 1 to N, where N is the number of
components in the file. You read components from an existing file @sing G.&Ybu can writea
component to the file using tifeH C R R @mdq H T G R NfadliGes implemented by other APL
interpreters; these allow you to append to the end of the file, or to replace an existing component
respectively. You can also delete components usiag T,@etonly from the start or the end of the

file. Components are not-reiumbered, so if you drop components from the start of the file, the first
component will no longer be number 1.

APLX retains upwards compatibility with this simple model, but in additi@viples the more general
functionsT H Y T K(wldch allows you to insert components anywhere within the range of existing
components, or immediately before or after them),faRd- G N Gvh&h allows you to delete a
component anywhere in the file). When you use these extensions, componantsuaically re
numbered so that they always comprise sequential integers from the first component M to the last
component 1+MN, where N is the number of components in the file.

Individual components may be any valid APL data, including nested arrdy®varlays created using

T Q Xwhich can contain multiple functions and variables). The components keep their type and shape
when stored and retrieved. When you replace a component, the new component does not have to be
the same size as the original; the file system automatiogigrels the file if necessary to

accommodate a larger component, and if possible releases space when you replace an existing
component with a smaller one.

When using the file system in a mulser or multitasking environment, you can optionally tie a file
for exclusive useT(H V K @r for shared access H U V)KAsfile may be kept secure from other users
by a pass number, and you can sedaeress matrixvhich determines what operations other users can
perform. To facilitate concurrent use of shared files whilst maintairatg idtegrity, the file hold

facility T HJ Qallews you to hold one or more files temporarily for exclusive use.

APLX Language Manual 220

Special considerations for ClietServer implementations of APLX

SeeT HE T G fov details on how component files can be located on eitherlibet ©r Server
machine.

Mixing 32-bit and 64-bit Component Files

If you are running both 3Bit and 64bit versions of APLX, then it is possible to share component
files between the two architectures, but there are some special points you should hué. avnare
rules are as follows:

1

If the file has been created from aBi2 version of APLX, then it will always remain as a 32

bit component file. It can be accessed frorrb@4APLX64 systems, but all components will

be held in 3zbit form. If you write a omponent from APLX64, then the data is converted to
32-bit form before it is written. This means no component can be bigger than 2GB, nor have
more than 2,147,483,647 elements. It also means that aoy iBdeger data will be converted

to floatingpointform if it contains integers of magnitude bigger than 2*31. If it contains
integers of magnitude bigger than 2*53, the data conversion will involve loss of precision. The
maximum size of the file is currently 2GB.

If the file has been created from abll APLX64 interpreter, it will be a 64it component
file. It cannot be accessed from-BR APLX systems. Data can be of any type or size, subject
only to an overall size limit for a single component file of 1024GB.

Component File Functions

For more inform#on, see the descriptions of tied z system functions:

T HC R R CAppend component to file

T HE T G CCreate a new component file

T HE UK\ Read component size information

T HF G N CDelete component from file

T HF T QF Drop components from start or end of file

T HF WR Duplicate component file, reclaiming wasted space
T HGT C UErase component file
THGT T CReturn operating - system error

T HJ QN FHold/Release component files for exclusive access
THNK D Return names of component files in directory

T H P C O CReturn names of currently - tied files

T HP WO Return tie numbers in use

T HT F C ERead component - file access matrix

T HT F E KRead component information

T HT F H KRead file information

T HT GC FRead component

T HT G P CRename component file

T HT G R NReplace existing component

THT GU K Set maximum file s ize

THUK\ CRead file - size and component - range information
T HUV C E Set component - file access matrix

APLX Language Manual 221

T HUV K CTie file for shared use

THV K G Tie file for exclusive use

T HWP V K Untie component file(s)

THY T K VAppend, replace or insert component

APLX Language Manual 223

Section 5 Native File Functions

APLX Language Manual 225

APLX Native File Support

APLX provides a full set of system functions which let you access the native file system on your host
machine.

In many cases, the easiest way to read or write data in files is to Us& the GNUTEXPORT

functions. These allow you to read or write the entire contents of a file in a single call, in a number of
common formats, for example in formats which spreadsheets can access. However, for more detailed
control of the contents of a file, or to assdiles which are too big to read into a variable in the
workspace, you will need to use the native file functions described below.

See alsd U s which allows you to read and write data held in relational databases.

Native file functions using tie numbers

Most of the APLX native file functions refer to a host file through atideumber a nonzero integer
value used to identify the filenge it has been opened. You can specify the tie number yourself as an
argument to thg P vV l0oGT P E T G umaiions. Alternatively, you can provide an argument of O and let
APLX choose a unique tie number for you (in this case it is returned as the exglititof the

function). The name of the file to tie is supplied tothe Vv loGT P E T G call@s a character vector

and may be a file name or a full host path name. If the full path is omitted the current working
directory is assumed. Case is significentost file names under Linux or AlX, but not under

Windows and MacOS.

Files may be accessed totally randomly, that is you can read and write data as an arbitrary stream of
bytes anywhere in the file. THeP T GarmlT P Y T Kflungtions also allow you to spi#y an optional
conversion to apply to the file data. For example you can read data as raw bytes or translate text files
into the internal representation used by APLX. Unicode text is also supported. You can read numeric
data as 2 or-byte integers, orsabooleans or-8yte floats. In addition you can specify that data is
byte-swapped for transfer between machines with different-bgdering conventions.

When you have finished using a file it must be untied using th&/pP fungtion. This will close the
file and release any file locks that have been set by th& Q finction. Files are also untied
automatically by aCLEAR or an)OFF. Tied files are not affected by)eOAD operation.

Errors may arise using the natifile system for a number of reasons, for example an attempt to tie a
nonexistent file or to read beyond the end of a file. In the event of an error of this type, the system
function will return a FILE 1/O ERROR. In addition, if error trapping is not éedba short

informative message is displayed:

‘TEST.DATA'" TNTIE 1
A file or directory in the path name does not exist.
FILE /O ERROR

) VGUVOFCVC) " TPVKG" 3

N

APLX Language Manual 226

The text of the specific error message is also available usingri®T Tf@Ttion. This returns the
error message for the last native fileteys function to give rise to a FILE 1/0 ERROR.

File size limits

In 32-bit versions of APLX, the maximum integer is 2147483647. Because file sizes and positions are
expressed as integers, this effectively puts a limit of 2GB on the size of native fildsywhican
directly access in the 3@t versions of APLX.

In APLX64, the maximum integer is 9223372036854775807, making it possible to directly access
files of up to 8,589,934,592 GB.

Special considerations for ClietServer versions of APLX

In ClientSener implementations of APLX, you can specify whether the native file access should take
place on the Client or Server machine. See the descriptip® & T G v @ore information.

APLX Language Manual 227

Native File System Functions

For details on using the natifde functions, see the following entries in the sectiorSystem
Functions and Variables

T P CRR CAppend data to file
T P ET GCCreate file

TP GT CLErase file

TPGTT (CGet last file error

T P NQE NLock/Unlock file

T P P C OCList names of tied file
T P P WO LList tie numbers

T P T GC FRead data from file
TP TGP CRename file

T P T GR NReplace data in file
TP T GUKResize file

TP UK\ CGet size of file
TPVKG Open file

T P WP V KClose file

TP YT K \VWrite data to file

APLX Language Manual 229

Section 6: System Commands

APLX Language Manual 231

)CLASSES (first (I ast))

Lists the names of the useefined classes in the current workspace. If the command is followed by a
character or group of characters, the list gives the names of all functions beginning with that character
or group of characters onwards (thegmaeteriirst , used on its own). A second character or group

of characters after the command (the paramater) is used to end the list of names. Names are

shown in alphabetic order, fully sorted.

)JCLASSES

Point Polygon Rectangle S phere Triangle
)JCLASSES S

Sphere Triangle
)JCLASSES Pol R

Polygon Rectangle

See alsg E N c U,unhich returns a list of usetefined classes and references to external classes.

)CLEAR (wssize)

Clears thecurrent workspace. All objects in the workspace are erased, most system variables revert to
their default settings, and the name of the workspace reverts to CLEAR WS.

)CLEAR
CLEAR WS

)CLEAR also optionally changes the workspace sizau ¥an specify a parameter which is the

workspace size you want. It must be an integer, and can be specified in bytes, or followed by K or KB
for kilobytes, M or MB for megabytes, or G or GB for gigabytes. The valid range is 50 KB to 2 GB

(for 32-bit versbns of APLX), or up to a theoretical maximum of 8580934592 GB for APLX64.

Depending on the operating system and its configuration, and the amount of memory already in use by
APLX tasks, you are likely to be limited in the maximum size of workspace whicltgo allocate.

Thus you may not get the full size requested. In practice also, if the workspace you allocate is larger
than the physical RAM in your system, then performance may become be very poor.

For example:

)JCLEAR 1000000
WS Size = 976KB
CLEAR WS

)CLEAR 1024KB
WS Size = 1.0MB
CLEAR WS

APLX Language Manual 232

)JCLEAR 100M
WS Size = 100MB
CLEAR WS

)CLEAR 2G
WS Size = 484MB
CLEAR WS

Note that in the last example, the user reque&BB but the operating system allocated only 484MB.

Example valid only in APLX64:

)CLEAR 16G
WS Size = 16GB
CLEAR WS

)CONTINUE

The)CONTINUE command is implementation dependent, but when implemented this command will
change tbB name of your active workspace to CONTINUE rE it, then leave APL. On re
entering APL, the CONTINUE workspace is automatically loaded. Use of this command is not
recommended, as it can quite easily lead to confusion on aumsaltisystem.

YCONTINUE
11.15.54 04/29/89 CONTINUE

)COPY (lib) name (:pass) (name(s)

Copies into the currentlgctive workspace named items from a saved workspace. For example, to
copy functions FRED and JOE from a workspace called MYWS in library 3wgaold enter:

)COPY 3 MYWS FRED JOE
SAVED 1991 -06- 13 23.24.06

If just the workspace name is used, the entire contents are copied:

)JCOPY MYWS
SAVED 1991 - 06-13 23.28.17

If the name of an object to be copied matctiee name of an object already in the active workspace,
the copy will overwrite the object already in the workspace. SegratsrY Protected copySCOPY
Silent copy,sPcoPYSilent protected copy). If a WORKSPACE FULL or SYMBOL TABLE FULL
error is encantered, the active workspace is left unchanged. You should note thabtheoperation
works by temporarilysAvEing the active workspace in the logical unit from which objects are being
copied (or in a disc defined for temporary objects), extractiagahuired objects from the workspace

APLX Language Manual 233

identified in theecopy command and then merging the active workspace and the objects to be copied.
It is thus possible to see a DISC FULL message during a copy operation.

Copying classes and objects

YCOPY can be usetb copy classes and objects from a saved workspace. However, some special
considerations arise:

1 Ifaclassis copied, and in the original workspace it had a parent, thgzothewill fail
unless a parent class of the same name exists in the destinati@mpace, or is copied at the
same time. APLX will report an error "Class XXX not copied, missing parent class YYY"

1 If a variable containing an object reference is copied, APLX will attempt to copy both the
object reference, and the object itself togethigh its saved property values. However, a class
of the same name as that of the original object must exist in the destination workspace (or be
copied in at the same time). If this is not the caseyabey will proceed, but the object
reference will beset to refer to the Null object. APLX will print a warning "At least one object
reference set to NULL (class does not exist)".

1 When an object instance is copied in, it is possible for data to be lost. This will happen if the
original version of the obje¢in the saved workspace) had a rawfault property which is no
longer valid in the current destination workspace (because the version of the class is different).
If this happens, thgeopPy will proceed, but APLX will print a warning "At least one object
property not copied (not valid for class)".

If you)coPY a list of classes and/or objects, or an entire workspace, APLX will first copy any top
level classes (classes with no parent), then classes of the first generation (childrele\a#ltolasses),
and so on. It will thencoPy object instances and other items. This guarantees that no object
properties or class hierarchy information is unnecessarily lost.

Library specification and path names

There are two different ways in which you can specify wiadteX should look for the saved
workspace:

1 You can specify the workspace name as just the base name of the workspace, for example
MYWSr Budget03 , optionally preceded by a library number. In this case, APLX appends any
default file-extension to the namesws for Windows, AIX or Linux), and searches in the
directory corresponding to the specified library number. Library numbers 0 to 9 are set up
either using the Preferences dialog, or by using tbey weygtem function. Library 10
contains the utility andemonstration workspaces supplied with APLX. If you omit the library
number, library 0 is assumed.

1 You can specify a full operatirgystem path name, including directory separation characters,
such asusr/workspaces/Budget03.aws (Linux), C:\ workspaces \ Budget03.aws
(Windows) or MacHD::workspaces:Budget03 (MacOS) APLX uses the path name exactly as
supplied, so under Linux, Windows and AIX you usually need to providewRefile
extension.

See the description of theoAD system command for more detail ldiraries and path names.

APLX Language Manual 234

Indirect copy

If one or more of the names following tf@oPY command is enclosed in parentheses and is the name
of a variable in the workspace to be copied from which is a simple character scalar, vector or matrix,
then the comnts of the variable are interpreted as the name or names of objects to be copied. The
alternative forms ofcOPY (i.e.)PCOPY,)SCOPY, and)SPCOPY) will also accept name arrays as part of
the name list of the command.

(THIS THAT THE_OTHER) §]) FCVC)
PCOGUGTDQZ")VJKU"VJICV"VJIGaQVJIGT)
)WSID TEST
WAS TEST
)VARS
NAMES THAT THE_OTHER THIS
)SAVE
1991 - 06- 13 19.14.26 TEST
)CLEAR
CLEAR WS
)COPY TEST (NAMES)
SAVED 1991 - 06- 13 19.14.26
)VARS
THAT THE_OTHER THIS

)CS (number)

)Cs followed by an integer from 0O to 7 establishes APL.68000 Level | or Level Il mode. The
Compatibility Setting is a workspacanameter and defaults to 0. Sek tor details of the
parameters. For example,

)CS 0
123[2]

generates a RANK ERROR whilst Compatibility Setting 1 (APL.68000 Level | mode) will return the
result 2 for the same expression. The Compatibility Setting is a packgparameter and defaults to O

)DIGITS number

Followed by a whole number between 1 and 15, this command sets the maximum number of
significant digits displayed after the decimal point in results. On its own (without any following

number) it asks theurrent setting of DIGITS. The default setting is 10. (See also the system variable
TRR. "Rt kpv"rtgekukgpt+

)DIGITS
IS 10

)DIGITS 8
WAS 10

APLX Language Manual 235

)DIGITS
IS8
TPP
8

)DISPLAY name

Displays the structure of a variable, in the same form as that returnedby HRRIAY system
function.

FCVCg*4" 45S6+")JGNNQ)
)DISPLAY DATA

ﬁht;tttttgttttttf
T"thtt¥F"thttttF" T
T"H3"4T" TIGNNQT" T
T Ts5"6T" t;;;;;U"T
TreijttOn " T
tlhtttttttttttttt U
Zg] *4"58S58+"*3"383+"*3"4" 458856+
)DISPLAY X
tetettt ettt eettttet® ¢ttt 5
T"thtttttttttttttttttttT"T
T"T"thttttF"th¥"tthttF"T"7T
T"T"H3" 4" 5T "H3T"HHA3I" 4T T T
T T Te6e"7"87T"¢+; 0" TTs"6T"T" T
T T ettt O ettt 00T T
TRttt ttttttttttrttttt Ut T
tlhtttttttttttttttttttttttyu

See the description gfF K U R foc ¢letails of the display fonat.

)DROP(lib) name (:pass)

Drops (erases) a named workspace from disk. If the saved workspace has been saved with a passworc
(see)wsID and)SAVE), then theDROPcommand must include the correct password. For example:

)DROP MYWS

)DROP 1 MYWS

)DROP MYWS:SECRET

)DROP /usr/workspaces/MYWS.aws

Library specification and path names

There are two different ways in which you can specify where APLX should look for the workspace to
be erased:

1 You can spefy the workspace name as just the base name of the workspace, for example
MYWSr Budget03 , optionally preceded by a library number. In this case, APLX appends any

APLX Language Manual 236

default file-extension to the nameags for Windows, AlX or Linux), and searches in the
directory corresponding to the specified library number. Library numbers 0 to 9 are set up
either using the Preferences dialog, or by using tbe weygtem function. Library 10

contains the utility and demonstration workspaces supplied with APLX. If you omit the library
number, library 0 is assumed.

1 You can specify a full operatirgystem path name, including directory separation characters,
sud as/usr/workspaces/Budget03.aws (Linux), C:\ workspaces \ Budget03.aws
(Windows) or MacHD::workspaces:Budget03 (MacOS) APLX uses the path name exactly as
supplied, so under Linux, Windows and AIX you usually need to provideukefile
extension. (Noteln ClientServer implementations of APLX, you can specify that the path
refers to the Client or Server machine by preceding the file name with an Up Aool@own
Arrow H).

See the description of theoAD system command for more detail on libraries and path names.

)EDIT (type) name

APLX includes a 'full screen’ editor for functions, operators, variables and classes. This editor may be
accessed via:

)EDIT

The editor is entered thus:

+GFKV"PCOG"""" " """ " GFKV" GZKUVKPI " QDLGEV" >PCOGC
6 EDIT NEW FUNCTION OR OPERATOR <NAME>
+GFKV"2"PCOG"" """ """ 6" GFKV"PGY" QT" GZKUVKPI " HWPEVK
+GFKV"3"PCOG"""""""" 6" GFKV"PGY" QT" GZKUVKPI " XCT" >P
+GFKV"4"PCOG""""" """ 6" GFKV"PGY" QT" GZKUVKPI "ENCUU"

JEDIT can also be used to edit individual class members, rather than the whole class. In this case, you
specify the fullyqudified name in the form ClassName.MemberName.

See alsq@ GF KV

APLX Language Manual 237

)ERASE name(s)

Erases named global variables, functions, operators and classes from the active workspace. The
command is followed by the name, or names, of the objects to be erasedemh @amnnot be erased, a
message to that effect is displayed. Local variables are not erased G # you wish to do this.

+GTCUG" GEE" PGOQ
NOT FOUND: NEMO

Indirect erase

If one or more of the names following tfERASE command is etlosed in parentheses and is the
name of a variable which is a simple character scalar, vector or matrix, then the contents of the
variable are interpreted as the name or names of items to be erased.

)VARS

A B C DATA MAT
)ERASE A C
)VARS

B DATA MAT
NAME§ TDQZ") D" FCVC)
NAMES

DATA
JERASE (NAMES) (rows of NAMES interpreted as object to erase)
)VARS
MAT NAMES
JERASE NAMES
)VARS
MAT
FCVCg) CaPCOG
)VARS
DATA MAT
)ERASE (DATA) (same error message as direct erase)
NOT FOUND: A_NAME

Erasing individual class members

JERASE can be used to erase a member (a method of property) from a class defisitigy dot
notation in the form ClassName.MemberName to specify which member should be deleted. The
change will immediately be reflected in any existing instances of the class:

PTTPGY" EQNQTaRQKPV
RVOTPN"4"" """ 6" Nkuv"rtgrgtvkgu"gh"qdl gev"RYV
COLOR
X
Y
z
)JERASE COLOR_POINT.Z
RVOTPN"4"""""§6"Qdl gev" RV"pqy"jcu"gpg"nguu"rtgragtv{
COLOR
X

Y

APLX Language Manual 238

Erasing whole classes

JERASE can also be used to erase a class definition (atigeathethods and properties defined in it).

Any instances of the class will become instances of the erased class's parent, if there is one, or of the
NULL class, if the erased class did not have a parent. Similarly, any classes which inherited from the
erased class will be rparented so that they now inherit from the erased class's parent.

In this example, classOINT3D inherits fromCOLOR_POINTwhich in turn inherits fronPOINT. PT is an
instance ofCOLOR_POINT

)CLASSES

COLOR_POINT POINT POIN T3D
TCLASS POINT3D

{POINT3D} {COLOR_POINT} {POINT}
RVGTPGY" EQNQTaRQKPV
RVOTENCUUPCOG

COLOR_POINT

If we erase the clas®OLOR_POINTIts child clasOINT3Dis reparented. The instaned becomes an
instance of the original parent:

)ERASE COLOR_POINT

TCLASS POINT3D
{POINT3D} {POINT}

RVOTENCUUPCOG
POINT

If we now erase the clag®INT, POINT3D will now have no parent, and the instamgebecomes an
instance of the NULL class:

)ERASE POINT

RVOTENCUUPCOG
NULL

TCLASS POINT3D
{POINT3D}

)ENS (first (last))

Lists the names of all the functions in the current workspace. If the command is followed by a
character or group of characters, the list gives the names of all functions beginning with that character
or group of characters onwards (the paramieter , used on its own). A second character or group

of characters after the command (the paramater) is used to end the list of names. Names are

shown in alphabetic order, fully sorted.

)ENS

AFE CONTINUE HELP INFO SCLOSE SLOG SMOUNT SOPEN

SREAD SRET SUNMOUNT TRANSLATE GOGTT""" GUPCOG
)ENS T

VTCPUNCVG" """ """ GOGTT""" GUPCOG

)ENS SM

APLX Language Manual 239

SMOUNT SOPEN SREAD SRET SUNMOUNT TRANSLATE
OGTT" GUPCOG

JFNS SM T
SMOUNT SOPEN SREAD SRET SUNMOUNT TRANSLATE

)GROUPname(s)

Gathers functions and variables into a group. The first name given will be the name of a group, and the
subsequent names are those of variables, functions and operators to be placed in the group. If only the
group name is fplied, the effect is to disband that group.

Groups can be used with the commayriASE and)COPY to deal with a set of objects in a single
operation. However, they are generally considered obsolete, because APLX support YeRASEt'
and)copPy, wherethe list of names is contained in an APL variable.

)FNS
COVARIANCE ~MEAN MEDIAN MODE STANDARD_DEV VARIANCE
)GROUP AVERAGES MEAN MEDIAN MODE
)GRPS
AVERAGES
)GRP AVERAGES
MEAN ~MEDIAN MODE
)ERASE AVERAGES
)FNS
COVARIANCE ~ STANDARD _DEV VARIANCE

)GRP name(s)

Lists the names of objects in gromame

)GRPS (first (last))

Lists the names of all the groups in the current workspace. If the command is followed by a character
or group of cheacters, the list gives the names of all groups beginning with that character or group of
characters onwards (the parameter first, used on its own). A second character or group of characters
after the command (the parameter last) is used to end theniagtr@ds. Names are shown in alphabetic
order, fully sorted.

JGROUP FILEFNS SOPEN SREAD SRET
)JGRP FILEFNS
SOPEN SREAD SRET

APLX Language Manual 240

)GRPS
FILEFNS

JHOST (command)

The)HOST command allows the user to issmeommand directly to the host environment and display
the result without leaving the APL workspace.

When used without a command, it displays the operating system under which you are working:

JHOST
IS AIX

When used with a commandesgified, the command is passed to the operating system and executed.
For example:

JHOST pwd
lusr/apl/aplx

ControlC or Break in the Interrupt menu will end the command and return to APL. Otherwise, control
returns to APL when the oomand terminates, or after a timeout value of 10 seconds. (For finer
control of the timeout, see thfel Q ystem function)

The)HOST command is highly implementatiespecific, and some operating system commands may
not be allowed. Points to note are:

1 AIX andLinux: Interactive commands can be executed if required.

1 MacOS:)HosTIis not implemented under MacOS 8 and 9 except to report the OS name. Under
MacOS X,HOsSTis implemented. It invokes the BSD terminal shell to run Lityte
programs such as 'Is' shell scripts. However, interactive programs are not supported.

1 Windows:)HOST is implemented under Windows, although interactive programs are not
supported. Note that, under Windows, many common commands arénbiailthe command
line shell, ratheritan being separate executable programs. Under Windows NT, 2000, XP and
Vista, you can run these using toebprogram with the¢ ' option. (Under Windows 95, 98
and ME, useCOMMAND.COM /§. For example:

JHOST CMD /CDIR C: \ PROG*.*
Volume in drive C has no label.

Volume Serial Number is 07D0 -0B11
Directory of C: \
17/11/2000 21:05 <DIR> Program Files
0 File(s) 0 bytes

1 Dir(s) 14,522,580,992 bytes free

APLX Language Manual 241

Special considerations for ClietServer implementations of APLX

In ClientServer implementations of APLX, the freahd which implements the useterface (the
"Client") runs on one machine, and thPIAX interpreter itself (the "Server”) can run on a different
machine. The two parts of the application communicate via a TCP/IP network. Typically, the Client
will be the APLX frontend built as a 3bit Windows application running on a desktop PC, and the
Server will be a 6bit APLX64 interpreter running on a @it Linux or Windows server.

In such systemgHOST allows you to specify whether the command should be executed on the Client
or the Server machine. You do this by preceding the command sttimgittier an Up ArrowA to

indicate that the command should be executed on the Client, or a Down#ioandicate that it

should run on the Server. If you do not specify, the default is that the call should take place on the
Client.

In this example, the Client is running wwrdVindows 2000, and the Server under Linux x86_64:

+JQUV" Heof "1le"xgt
Microsoft Windows 2000 [Version 5.00.2195]

+J QUV" AHwpnspo g "
Linux nx6125 x86_64

)IN (lib) filename (name(s))

Imports a Transfer File into thete workspace. Transfer Files are text versions of APL objects that
are created by th®uT command, or equivalent APL functions. They may be created by APLX or by
another APL interpreter such as IBM's APL2. The Transfer File format is fully explairks tire

YOUT andT vV Bommands. The default file extension for Transfer Filestfis .

You can import either the whole Transfer File, or just selected items as specified by the 'names’
parameter of the command. For example:

)FNS
)IN DISPLAY (Read the whole Transfer File)
)FNS
ABSTRACT DISPLAY DESCRIBE
)CLEAR
CLEAR WS
)IN 3 DISPLAY DESCRIBE (Read specified objects from Transfer
File in Libr ary 3)
)FNS
DESCRIBE
)IN 2 DODO (Transfer File not found)
WS NOT FOUND

Library specification and path names

There are two different ways in which you can specify where APLX shoaldftw the Transfer File:

APLX Language Manual 242

1 You can specify the just the base name of the file, for exammpler Budget03 , optionally
preceded by a library number. In this case, APLX appends the defaglktdasionatf to
the name, and searches for the file in theadory corresponding to the specified library
number. Library numbers O to 9 are set up either using the Preferences dialog, or by using the
T 0 Qwsysgtem function. Library 10 contains the utility and demonstration workspaces
supplied with APLX. If you omit the library number, library 0 is assumed.

1 You can specify a full operatirgystem path name, including directory separation characters,
sud as/usr/transfer/Budget03.atf (Linux), C:\ transfer \ Budget03.atf ~ (Windows) or
MacHD::transfer:Budget03.atf (MacOS) APLX uses the path name exactly as supplied, so
you usually need to provide thef file extension explicitly. (Note: In Clierberver
implementations of APLX, you can specify that the path refers to the Client or Server machine
by preceding the file name with an Up Arrévor Down ArrowH).

See the description of theoAD system command for more detail on libraries and path names.

)LIB (lib)

Lists the names of the workspaces in the library or explicit path specified (or Library O by default). If
the command (and libra number, if used) are followed by a letter, only workspaces beginning with
that letter are listed.

)LIB
COAL CONSOLE FORMAT MIRSEQ NEWGRAF
PSYS SYSFNS
)LIB C
COAL CONSOLE
)LIB 3
CALCULATE DISPLAY
)LIB C: \ workspaces \ budgets
Budget02 Budget03 BudgetDraft

Note that only APLX workspaces are shown in the list, not other files. Under Windows, Linux and
AlX, these will have the file extensicaws (any workspaces you save using a full pathname without
this extension will not be listed). The file extension is not shown inLtBe display.

Library specification and path names

There are two different ways in vdii you can specify the directory where APLX should look for the
workspaces:

T You can specify a numeric library number, as shown in the first three examples above. Library
numbers 0 to 9 are set up either using the Preferences dialog, or by ugirgahesygtem
function. Library 10 contains the utility and demonstration workspaces supplied with APLX. If
you omit the library number, library O is assumed.

1 As shown in the last example above, you can specify a full opeiststgm directory name,
including directory separation characters, suchisasvorkspaces/ (Linux),

